Do you want to publish a course? Click here

A single-hole spin qubit

92   0   0.0 ( 0 )
 Added by N.W. Hendrickx
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Qubits based on quantum dots have excellent prospects for scalable quantum technology due to their inherent compatibility with standard semiconductor manufacturing. While early on it was recognized that holes may offer a multitude of favourable properties for fast and scalable quantum control, research thus far has remained almost exclusively restricted to the simpler electron system. However, recent developments with holes have led to separate demonstrations of single-shot readout and fast quantum logic, albeit only in the multi-hole regime. Here, we establish a single-hole spin qubit in germanium and demonstrate the integration of single-shot readout and quantum control. Moreover, we make use of Pauli spin blockade, allowing to arbitrarily set the qubit resonance frequency, while providing large readout windows. We deplete a planar germanium double quantum dot to the last hole, confirmed by radio-frequency reflectrometry charge sensing, and achieve single-shot spin readout. To demonstrate the integration of the readout and qubit operation, we show Rabi driving on both qubits and find remarkable electric control over their resonance frequencies. Finally, we analyse the spin relaxation time, which we find to exceed one millisecond, setting the benchmark for hole-based spin qubits. The ability to coherently manipulate a single hole spin underpins the quality of strained germanium and defines an excellent starting point for the construction of novel quantum hardware.

rate research

Read More

Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty to locally address the quantum spin states of individual NV spins in a scalable, energy-efficient manner. Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems. By utilizing electrically generated spin currents, we are able to achieve efficient tuning of magnetic damping and the amplitude of the dipole fields generated by a micrometer-sized resonant magnet, enabling electrical control of the Rabi oscillation frequency of NV spins. Our results highlight the potential of NV centers in designing functional hybrid solid-state systems for next-generation quantum-information technologies. The demonstrated coupling between the NV centers and the propagating spin waves harbored by a magnetic insulator further points to the possibility to establish macroscale entanglement between distant spin qubits.
A quantum two-level system with periodically modulated energy splitting could provide a minimal universal quantum heat machine. We present the experimental realization and the theoretical description of such a two-level system as an impurity electron spin in a silicon tunnel field-effect transistor. In the incoherent regime, the system can behave analogously to either an Otto heat engine or a refrigerator. The coherent regime could be described as a superposition of those two regimes, producing specific interference fringes in the observed source-drain current.
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
The quantum coherence and gate fidelity of electron spin qubits in semiconductors is often limited by noise arising from coupling to a bath of nuclear spins. Isotopic enrichment of spin-zero nuclei such as $^{28}$Si has led to spectacular improvements of the dephasing time $T_2^*$ which, surprisingly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom $^{31}$P qubit in enriched $^{28}$Si, we show that the abnormally long $T_2^*$ is due to the controllable freezing of the dynamics of the residual $^{29}$Si nuclei close to the donor. Our conclusions are supported by a nearly parameter-free modeling of the $^{29}$Si nuclear spin dynamics, which reveals the degree of back-action provided by the electron spin as it interacts with the nuclear bath. This study clarifies the limits of ergodic assumptions in analyzing many-body spin-problems under conditions of strong, frequent measurement, and provides novel strategies for maximizing coherence and gate fidelity of spin qubits in semiconductors.
We present measurements of the Berry Phase in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. Our results demonstrate the remarkable degree of coherent control achievable in the presence of a highly complex solid-state environment. We manipulate the spin qubit geometrically by careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting phase via spin-echo interferometry. We find good agreement with Berrys predictions within experimental errors. We also investigated the role of the environment on the geometric phase, and observed that unlike other solid-state qubit systems, the dephasing was primarily dominated by fast radial fluctuations in the path.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا