Do you want to publish a course? Click here

Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa$_2$ Cu$_3$ O$_{7-x}$ (YBCO) superconductor when it is grown on top of ferromagnetic La$_{0.7}$ Ca$_{0.3}$ MnO$_3$ (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La$_{0.7}$ Ca$_{0.3}$ interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO$_2$ plane at the La$_{0.7}$ Ca$_{0.3}$ and MnO$_2$ terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.
Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO$_3$. An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.
158 - G. Y. Gao , Z. B. Yang , W. Huang 2013
Epitaxial Mn-doped BiFeO3 (MBFO) thin films were grown on GaAs (001) substrate with SrTiO3 (STO) buffer layer by pulsed laser deposition. X-ray diffraction results demonstrate that the films show pure (00l) orientation, and MBFO(100)//STO(100), whereas STO (100)//GaAs (110). Piezoresponse force microscopy images and polarization versus electric field loops indicate that the MBFO films grown on GaAs have an effective ferroelectric switching. The MBFO films exhibit good ferroelectric behavior (2Pr ~ 92 {mu}C/cm2 and 2EC ~ 372 kV/cm). Ferromagnetic property with saturated magnetization of 6.5 emu/cm3 and coercive field of about 123 Oe is also found in the heterostructure at room temperature.
We have used soft x-ray magnetic diffraction at the Fe3+ L2,3 edges to examine to what extent the Dzyaloshinsky-Moriya interaction in Ba3NbFe3Si2O14 influences its low temperature magnetic structure. A modulated component of the moments along the c-axis is present, adding to the previously proposed helical magnetic configuration of co-planar moments in the a,b-plane. This leads to a helical-butterfly structure and suggests that both the multi-axial in-plane and the uniform out-of-plane Dzyaloshinsky-Moriya vectors are relevant. A non zero orbital magnetic signal is also observed at the oxygen K edge, which reflects the surprisingly strong hybridization between iron 3d and oxygen 2p states, given the nominal spherical symmetry of the Fe3+ half filled shell.
The effect of x-rays on an orbital and charge ordered epitaxial film of a Pr$_{0.5}$Ca$_{0.5}$MnO$_{3}$ is presented. As the film is exposed to x-rays, the antiferromagnetic response increases and concomitantly the conductivity of the film improve. These results are discussed in terms of a persistent x-ray induced doping, leading to a modification of the magnetic structure. This effect allows writing electronic and magnetic domains in the film and represents a novel way of manipulating magnetism.
We report a high precision search for orbital-like magnetic order in the pseudogap region of La2-xSrxCuO4 single crystals using zero-field muon spin relaxation (ZF-muSR). In contrast to previous studies of this kind, the effects of the dipolar and quadrupolar interactions of the muon with nearby nuclei are calculated. ZF-muSR spectra with a high number of counts were also recorded to determine whether a magnetically ordered phase exists in dilute regions of the sample. Despite these efforts, we find no evidence for static magnetic order of any kind in the pseudogap region above the hole-doping concentration p = 0.13.
It is shown that attempts to accurately deduce the magnetic penetration depth of overdoped BaFe_{1.82}Co_{0.18}As2 single crystals by transverse-field muon spin rotation (TF-muSR) are thwarted by field-induced magnetic order and strong vortex-lattice disorder. We explain how substantial deviations from the magnetic field distribution of a nearly perfect vortex lattice by one or both of these factors is also significant for other iron-based superconductors, and this introduces considerable uncertainty in the values of the magnetic penetration depth obtained by TF-muSR.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا