Do you want to publish a course? Click here

Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.
Spontaneously crystalline ground states, called quantum crystals, of a trapped Rydberg-dressed Bose-Einstein condensate are numerically investigated. As a result described by a mean-field order parameter, such states simultaneously possess crystalline and superfluid properties. A hexagonal droplet lattice is observed in a quasi-two-dimensional system when dressing interaction is sufficiently strong. Onset of these states is characterized by a drastic drop of the non-classical rotational inertia proposed by Leggett [Phys. Rev. Lett. 25, 1543 (1970)]. In addition, an AB stacking bilayer lattice can also be attained. Due to an anisotropic interaction possibly induced by an external electric field, transition from a hexagonal to a nearly square droplet lattice is also observed.
Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Comparison with three-dimensional numerical simulations demonstrates that these formulae are accurate enough already at distances from the obstacle equal to a few wavelengths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا