Do you want to publish a course? Click here

The Anglo-Australian Planet Search has now accumulated 12 years of radial-velocity data with long-term instrumental precision better than 3 m/s. In this paper, we expand on earlier simulation work, to probe the frequency of near-circular, long-period gas-giant planets residing at orbital distances of 3-6 AU -- the so-called Jupiter analogs. We present the first comprehensive analysis of the frequency of these objects based on radial-velocity data. We find that 3.3% of stars in our sample host Jupiter analogs; detailed, star-by-star simulations show that no more than 37% of stars host a giant planet between 3-6 AU.
Radial-velocity planet search campaigns are now beginning to detect low-mass Super-Earth planets, with minimum masses M sin i < 10 M_earth. Using two independently-developed methods, we have derived detection limits from nearly four years of the highest-precision data on 24 bright, stable stars from the Anglo-Australian Planet Search. Both methods are more conservative than a human analysing an individual observed data set, as is demonstrated by the fact that both techniques would detect the radial velocity signals announced as exoplanets for the 61 Vir system in 50% of trials. There are modest differences between the methods which can be recognised as arising from particular criteria that they adopt. What both processes deliver is a quantitative selection process such that one can use them to draw quantitative conclusions about planetary frequency and orbital parameter distribution from a given data set. Averaging over all 24 stars, in the period range P<300 days and the eccentricity range 0.0<e<0.6, we could have detected 99% of planets with velocity amplitudes K>7.1 m/s. For the best stars in the sample, we are able to detect or exclude planets with K>3 m/s, corresponding to minimum masses of 8 M_earth (P=5 days) or 17 M_earth (P=50 days). Our results indicate that the observed period valley, a lack of giant planets (M>100 M_earth) with periods between 10-100 days, is indeed real. However, for planets in the mass range 10-100 M_earth, our results suggest that the deficit of such planets may be a result of selection effects.
93 - Simon J. OToole 2010
In the last decade or so, there have been numerous searches for hot subdwarfs in close binaries. There has been little to no attention paid to wide binaries however. The advantages of understanding these systems can be many. The stars can be assumed to be coeval, which means they have common properties. The distance and metallicity, for example, are both unknown for the subdwarf component, but may be determinable for the secondary, allowing other properties of the subdwarf to be estimated. With this in mind, we have started a search for common proper motion pairs containing a hot subdwarf component. We have uncovered several promising candidate systems, which are presented here.
The emission nebula around the subdwarf B (sdB) star PHL 932 is currently classified as a planetary nebula (PN) in the literature. Based on a large body of multi-wavelength data, both new and previously published, we show here that this low-excitation nebula is in fact a small Stromgren sphere (HII region) in the interstellar medium around this star. We summarise the properties of the nebula and its ionizing star, and discuss its evolutionary status. We find no compelling evidence for close binarity, arguing that PHL 932 is an ordinary sdB star. We also find that the emission nebulae around the hot DO stars PG 0108+101 and PG 0109+111 are also Stromgren spheres in the ISM, and along with PHL 932, are probably associated with the same extensive region of high-latitude molecular gas in Pisces-Pegasus.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا