Do you want to publish a course? Click here

95 - Long Ji , Shu Zhang , YuPeng Chen 2015
Type-I X-ray bursts on the surface of a neutron star are a unique probe to the accretion in X-ray binary systems. However, we know little about the feedback of the burst emission upon accretion. Hard X-ray shortages and enhancements of the persistent emission at soft X-rays have been observed. To put these findings in context with the aim of understanding the possible mechanism underneath, we investigated 68 bursts seen by RXTE from the clocked burster GS 1826--238. We diagnosed jointly the burst influence at both soft and hard X-rays, and found that the observations can be described as the CompTT model with variable normalization, electron temperature and optical depth. Putting these results in a scenario of coronal Compton cooling via the burst emission would lead to a shortage of the cooling power, which may suggest that additional consideration like the influence of the burst on the corona formation should be accounted for as well.
86 - Long Ji , Shu Zhang , YuPeng Chen 2014
We investigated the possible feedback of type-I burst to the accretion process during the spectral evolution of the atoll source 4U 1608--52. By fitting the burst spectrum with a blackbody and an adjustable, persistent spectral component, we found that the latter is significant state-dependent. In the banana state the persistent flux increases along the burst evolution, while in the island state this trend holds only when the bursts are less luminous and starts to reverse at higher burst luminosities. We speculate that, by taking into account both the Poynting-Robertson drag and radiation pressure, these phenomena may arise from the interactions between the radiation field of the type-I burst and the inner region of the accretion disc.
97 - Shu Zhang , Bo-Qiang Ma 2014
The constancy of light speed is a basic assumption in Einsteins special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-dependent due to the Lorentz invariance violation~(LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass~8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.
We present INTEGRAL spectral analysis in the orbital/superorbital phase space of LS I +61 303. A hard X-ray spectrum with no cutoff is observed at all orbital/superorbital phases. The hard X-ray index is found to be uncorrelated with the radio index (non-simultaneously) measured at the same orbital and superorbital phases. In particular, the absence of an X-ray spectrum softening during the periods of negative radio index does not favor a simple interpretation of the radio index variations in terms of changes of state in a microquasar. We uncover hints for the superorbital variability in the hard X-ray flux, in phase with the superorbital modulation in soft X-rays. An orbital phase drift of radio peak flux and index along the superorbital period is observed in the radio data. We explore its influence on a previously reported double peak structure of radio orbital lightcurve, posing it as a plausible explanation.
297 - Long Ji , Shu Zhang , YuPeng Chen 2014
Aims: A hard X-ray shortage, implying the cooling of the corona, was observed during bursts of IGR J17473-272, 4U 1636-536, Aql X-1, and GS 1826-238. Apart from these four sources, we investigate here an atoll sample, in which the number of bursts for each source is larger than 5, to explore the possible additional hard X-ray shortage during {it Rossi X-ray timing explorer (RXTE)} era. Methods: According to the source catalog that shows type-I bursts, we analyzed all the available pointing observations of these sources carried out by the {it RXTE} proportional counter array (PCA). We grouped and combined the bursts according to their outburst states and searched for the possible hard X-ray shortage while bursting. Results: We found that the island states of KS 1731-260 and 4U 1705-44 show a hard X-ray shortage at significant levels of 4.5 and 4.7 $sigma$ and a systematic time lag of $0.9 pm 2.1$ s and $2.5 pm 2.0$ s with respect to the soft X-rays, respectively. While in their banana branches and other sources, we did not find any consistent shortage.
We report the discovery of an anti-correlation between the soft and the hard X-ray lightcurves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 lightcurves of type-I bursts, we find a shortage in the 40--50 keV band, delayed by 4.5$pm$1.4 s with respect to the soft X-rays. The photospheric radius expansion (PRE) bursts are different in that neither a shortage nor an excess shows up in the hard X-ray lightcurve.
With {it RXTE} data, we analyzed the cross-correlation function between the soft and hard X-rays of the transient atoll source 4U 1608-52. We found anti-correlations in three outbursts occurred in 1998, 2002 and 2010, and significant time lags of several hundreds of seconds in the latter two outbursts. Our results show no correlation between the soft and hard X-rays in the island state, and a dominated positive correlation in the lower banana state. Anti-correlations are presented at the upper banana state for the outburst of 2010 and at the lower left banana states for the other two outbursts. So far for atoll sources the cross-correlation has been studied statistically only for 4U 1735-44, where anti-correlations showed up in the upper banana state. Here our investigation upon 4U 1608-52 provides a similar result in its 2010 outburst. In addition, we notice that the luminosities in the upper banana of 1998 and 2002 outbursts are about 1.5 times that of 2010 outburst whose luminosity in the upper banana is close to that of 4U 1735-44. The results suggest that the states in color-color diagram of a source could be correlated with the luminosity of the source. A further spectral analysis shows that, during the 2010 outburst, although an anti-correlation presents at the highest fluxes, the contemporary spectrum is not the softest one along the outburst evolution. This suggests that the observed anti-correlation may be relevant to the transition between the hard and soft states, which is consistent with the previous results on 4U 1735-44 and several black hole X-ray binaries that anti-correlations are observed during the transition states.
98 - Long Ji , Shu Zhang , YuPeng Chen 2013
To investigate the possible cooling of the corona by soft X-rays bursts, we have studied 114 bursts embedded in the known X-ray evolution of 4U 1636-536. We have grouped these bursts according to the ratio of the flux in the 1.5--12 keV band with respect to that in the 15--50 keV band, as monitored by RXTE/ASM and Swift/BAT, respectively. We have detected a shortage at hard X-rays while bursting. This provides hints for a corona cooling process driven by soft X-rays fed by the bursts that occurred on the surface of neutron star. The flux shortage at 30--50 keV has a time lag of 2.4$pm$1.5 seconds with respect to that at 2--10 keV, which is comparable to that of 0.7$pm$0.5 seconds reported in bursts of IGR 17473-2721. We comment on the possible origin of these phenomena and on the implications for the models on the location of the corona.
We present timing, spectral, and long-term temporal analysis of the high mass X-ray binary (HMXB) 4U 1036-56 using INTEGRAL and Swift observations. We show that it is a weak hard X-ray source spending a major fraction of the time in quiescence, and only occasionally characterized by X-ray outbursts. The outburst activity we report here lasts several days, with a dynamic range spanned by the luminosity in quiescence and in outburst as high as ~30. We report the detection of pulse period at 854.75+/-4.39 s during an outburst, which is consistent with previous measurements. Finally, we analyze the possibility of 4U 1036--56s association with the unidentified transient gamma-ray sources AGL J1037--5708 & GRO J1036--55, as prompted by its positional correlation.
The 2008 outburst of the atoll source IGR J17473--2721 was observed by INTEGRAL, RXTE and Swift. Tens of type-I X-ray bursts were found in this outburst. Joint observations provide sufficient data to look into the behavior of IGR J17473--2721 at the rising part of the outburst. We find that the joint energy spectra can be well fitted with a model composed of a blackbody and a cutoff power-law, with a cutoff energy decreasing from $ sim$ 150 keV to $sim$ 40 keV as the source leaves the quiescent state toward the low hard state. This fits into a scenario in which the corona is cooled by the soft X-rays along the outburst evolution, as observed in several other atoll sources. By using the flux measured in the 1.5--30 keV band of the type-I bursts during the outburst, we find that the linear relationship between the burst duration and the flux still holds for those bursts that occur at the decaying part of the low hard state, but with a different slope than the overall one that was estimated with the bursts happening in the whole extent of, and for the rest of the low hard state. The significance of such a dichotomy in the type-I X-ray bursts is $sim$ 3 $sigma$ under an F-test. Similar results are hinted at as well with the broader energy-band that was adopted recently. This dichotomy may be understood in a scenario where part of the accreting material forms a corona on the way of falling onto the surface of the neutron star during the decaying part of the low hard state. Based on the accretion rates of the preceding LHS, estimated from type-I X-ray bursts and from persistent emission, at least for IGR J17473-2721, most of the accretion material may fall on the neutron star (NS) surface in the LHS. Considering the burst behavior in the context of the outburst indicates a corona formed on top of the disk rather than on the NS surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا