Do you want to publish a course? Click here

Possible hard X-ray shortages in bursts from KS 1731-260 and 4U 1705-44

338   0   0.0 ( 0 )
 Added by Long Ji
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims: A hard X-ray shortage, implying the cooling of the corona, was observed during bursts of IGR J17473-272, 4U 1636-536, Aql X-1, and GS 1826-238. Apart from these four sources, we investigate here an atoll sample, in which the number of bursts for each source is larger than 5, to explore the possible additional hard X-ray shortage during {it Rossi X-ray timing explorer (RXTE)} era. Methods: According to the source catalog that shows type-I bursts, we analyzed all the available pointing observations of these sources carried out by the {it RXTE} proportional counter array (PCA). We grouped and combined the bursts according to their outburst states and searched for the possible hard X-ray shortage while bursting. Results: We found that the island states of KS 1731-260 and 4U 1705-44 show a hard X-ray shortage at significant levels of 4.5 and 4.7 $sigma$ and a systematic time lag of $0.9 pm 2.1$ s and $2.5 pm 2.0$ s with respect to the soft X-rays, respectively. While in their banana branches and other sources, we did not find any consistent shortage.



rate research

Read More

The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify fingerprints in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.
4U 1705-44 is one of the most-studied type I X-ray burster and Atoll sources. This source represents a perfect candidate to test different models proposed to self-consistently track the physical changes occurring between different spectral states because it shows clear spectral state transitions. The broadband coverage, the sensitivity and energy resolution of the BeppoSAX satellite offers the opportunity to disentangle the components that form the total X-ray spectrum and to study their changes according to the spectral state. Using two BeppoSAX observations carried out in August and October 2000, respectively, for a total effective exposure time of about 100 ks, we study the spectral evolution of the source from a soft to hard state. Energy spectra are selected according to the source position in the color-color diagram (CCD) Results. We succeeded in modeling the spectra of the source using a physical self-consistent scenario for both the island and banana branches (the double Comptonization scenario). The components observed are the soft Comptonization and hard Comptonization, the blackbody, and a reflection component with a broad iron line. When the source moves from the banana state to the island state, the parameters of the two Comptonization components change significantly and the blackbody component becomes too weak to be detected. We interpret the soft Comptonization component as emission from the hot plasma surrounding the neutron star, hard Comptonization as emission from the disk region, and the blackbody component as emission from the inner accretion disk. The broad feature in the iron line region is compatible with reflection from the inner accretion disk.
We report on an approximately twelve hour long X-ray flare from the low-mass X-ray binary KS 1731-260. The flare has a rise time of less than 13 min and declines exponentially with a decay time of 2.7 hours. The flare emission is well described by black-body radiation with peak temperature of 2.4 keV. The total energy release from the event is 10^{42} erg (for an assumed distance of 7 kpc). The flare has all the characteristics of thermo-nuclear X-ray bursts (so-called type I X-ray bursts), except for its very long duration and therefore large energy release (factor of 1500-4000 longer and 250-425 more energy than normal type I X-ray bursts from this source). The flare is preceded by a short and weak X-ray burst, possibly of type I. Days to weeks before the flare, type I X-ray bursts were seen at a rate of ~3 per day. However, after the flare type I X-ray bursting ceased for at least a month, suggesting that the superburst affected the type I bursting behaviour. The persistent emission is not significantly different during the non-bursting period. We compare the characteristics of this event with similar long X-ray flares, so-called superbursts, seen in other sources (4U 1735-44, 4U 1820-30, 4U 1636-53, Ser X-1, GX 3+1). The event seen from KS 1731-260 is the longest reported so far. We discuss two possible mechanisms that might cause these superbursts, unstable carbon burning (as proposed recently) and electron capture by protons with subsequent capture of the resulting neutrons by heavy nuclei.
Crustal cooling of accretion-heated neutron stars provides insight into the stellar interior of neutron stars. The neutron star X-ray transient, KS~1731$-$260, was in outburst for 12.5 years before returning to quiescence in 2001. We have monitored the cooling of this source since then through {it Chandra} and {it XMM-Newton} observations. Here, we present a 150 ks {it Chandra} observation of KS~1731$-$260 taken in August 2015, about 14.5 years into quiescence, and 6 years after the previous observation. We find that the neutron star surface temperature is consistent with the previous observation, suggesting that crustal cooling has likely stopped and the crust has reached thermal equilibrium with the core. Using a theoretical crust thermal evolution code, we fit the observed cooling curves and constrain the core temperature (T$_c = 9.35pm0.25times10^7$ K), composition (Q$_{imp} = 4.4^{+2.2}_{-0.5}$) and level of extra shallow heating required (Q$_{sh} = 1.36pm0.18$ MeV/nucleon). We find that the presence of a low thermal conductivity layer, as expected from nuclear pasta, is not required to fit the cooling curve well, but cannot be excluded either.
Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these features are consistently fitted with a reflection model, and we find that in the hard state the smearing parameters are remarkably similar to those found in a previous XMM-Newton observation performed in the soft state. In particular, we find that the inner disk radius is Rin = 17 +/- 5 Rg (where Rg is the Gravitational radius, GM/c^2), the emissivity dependence from the disk radius is -2.5 +/- 0.5, the inclination angle with respect to the line of sight is i = 43 +/- 5 degrees, and the outer radius of the emitting region in the disk is Rout > 200 Rg. We note that the accretion disk does not appear to be truncated at large radii, although the source is in a hard state at about 3 % of the Eddington luminosity for a neutron star. We also find evidence of a broad emission line at low energies, at 3.03 +/- 0.03 keV, compatible with emission from mildly ionized Argon (Ar XVI-XVII). Argon transitions are not included in the self-consistent reflection models that we used and we therefore added an extra component to our model to fit this feature. The low energy line appears compatible with being smeared by the same inner disk parameters found for the reflection component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا