Do you want to publish a course? Click here

The modified gravity is considered to be one of possible explanations of the accelerated expansions of the present and the early universe. We study effects of the modified gravity on big bang nucleosynthesis (BBN). If effects of the modified gravity are significant during the BBN epoch, they should be observed as changes of primordial light element abundances. We assume a $f(G)$ term with the Gauss-Bonnet term $G$, during the BBN epoch. A power-law relation of $df/dG propto t^p$ where $t$ is the cosmic time was assumed for the function $f(G)$ as an example case. We solve time evolutions of physical variables during BBN in the $f(G)$ gravity model numerically, and analyzed calculated results. It is found that a proper solution for the cosmic expansion rate can be lost in some parameter region. In addition, we show that calculated results of primordial light element abundances can be significantly different from observational data. Especially, observational limits on primordial D abundance leads to the strongest constraint on the $f(G)$ gravity. We then derive constraints on parameters of the $f(G)$ gravity taking into account the existence of the solution of expansion rate and final light element abundances.
Big bang nucleosynthesis in a modified gravity model of $f(R)propto R^n$ is investigated. The only free parameter of the model is a power-law index $n$. We find cosmological solutions in a parameter region of $1< n leq (4+sqrt{6})/5$. We calculate abundances of $^4$He, D, $^3$He, $^7$Li, and $^6$Li during big bang nucleosynthesis. We compare the results with the latest observational data. It is then found that the power-law index is constrained to be $(n-1)=(-0.86pm 1.19)times 10^{-4}$ (95 % C.L.) mainly from observations of deuterium abundance as well as $^4$He abundance.
We study slow-roll inflation with a Gauss-Bonnet term that is coupled to an inflaton field nonminimally. We investigate the inflationary solutions for a specific type of the nonminimal coupling to the Gauss-Bonnet term and inflaton potential both analytically and numerically. We also calculate the observable quantities such as the power spectra of the scalar and tensor modes, the spectral indices, the tensor-to-scalar ratio and the running spectral indices. Finally, we constrain our result with the observational data by Planck and BICEP2 experiment.
We consider the linear perturbations for the single scalar field inflation model interacting with an additional triad of scalar fields. The background solutions of the three additional scalar fields depend on spatial coordinates with a constant gradient $alpha$ and the ensuing evolution preserves the homogeneity of the cosmological principle. After we discuss the properties of background evolution including an exact solution for the exponential-type potential, we investigate the linear perturbations of the scalar and tensor modes in the background of the slow-roll inflation. In our model with small $alpha$, the comoving wavenumber has {it a lower bound} $sim alpha M_{rm P}$ to have well-defined initial quantum states. We find that cosmological quantities, for instance, the power spectrums and spectral indices of the comoving curvature and isocurvature perturbations, and the running of the spectral indices have small corrections depending on {it the lower bound}. Similar behaviors happen for the tensor perturbation with the same lower bound.
We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains $phi^4$ term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum dominated region becomes either the type (I) or (II), resulting in blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while it around the local minimum must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.
185 - Seoktae Koh , Sunyoung Shin 2010
We investigate the Hamiltonian structure of linearized extended Hov{r}ava- Lifshitz gravity in a flat cosmological background following the Faddeev-Jackiws Hamiltonian reduction formalism. The Hamiltonian structure of extended Hov{r}ava-Lifshitz gravity is similar to that of the projectable version of original Hov{r}ava-Lifshitz gravity, in which there is one primary constraint and so there are two physical degrees of freedom. We also find that extra scalar graviton mode in an inflationary background can be decoupled from the matter field in the infrared (IR) limit, but it is coupled to the matter field in a general cosmological background. But it is necessary to go beyond linear order in order to draw any conclusion of the strong coupling problem.
We investigate the linear cosmological perturbations in Hov{r}ava-Lifshitz gravity with a scalar field. Starting from the most general expressions of the metric perturbations as well as that of a canonical scalar field, we decompose the scalar, vector and tensor parts of the perturbed action. By reducing the Hamiltonian, we find that there are two independent degrees of freedom for the tensor perturbations while none for the vector perturbations. For the scalar perturbations, the remaining number of degrees of freedom, which are all gauge invariant, depends on whether the projectable condition is applied or not. For both cases, we lose the time reparametrization symmetry of any kind.
125 - Seoktae Koh 2009
We calculate the spectrum of the relic gravitational wave due to the trans-Planckian effect in which the standard linear dispersion relations may be modified. Of the modified dispersion relations suggested in literatures which have investigated the trans-Planckian effect, we especially use the Corley-Jacobson dispersion relations. The Corley-Jacobson type modified dispersion relations can be obtained from Hov{r}ava-Lifshitz gravity which is non-relativistic and UV complete. Although it is not clear how the transitions from Hov{r}ava-Lifshitz gravity in the UV regime to Einstein gravity in the IR limit occur, we assume Hov{r}ava-Lifshitz gravity regime is followed by the inflationary phase in Einstein gravity.
130 - Seoktae Koh 2009
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field potential is required to satisfy the three minimal conditions for successful inflation: i) $rho>0$, ii) $rho+3P < 0$ and iii) the slow-roll conditions. As an example, we consider the massive vector potential and small field type potential as like in scalar driven inflation.
170 - Seoktae Koh , Bin Hu 2009
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase, so we investigate the evolution of a vector field within a scalar field driven inflation model. And we calculate the power spectrum of the vector field without considering the metric perturbations. While the time component of the vector field perturbations provides a scale invariant spectrum when $xi = 0$, where $xi$ is a nonminimal coupling parameter, both the longitudinal and transverse perturbations give a scale invariant spectrum when $xi = 1/6$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا