Do you want to publish a course? Click here

We investigate the nature of the fractional quantum Hall (FQH) state at filling factor $ u=13/5$, and its particle-hole conjugate state at $12/5$, with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scale density-matrix renormalization group (DMRG) calculation in spherical geometry, we present evidence that the physics of the Coulomb ground state (GS) at $ u=13/5$ and $12/5$ is captured by the $k=3$ parafermion Read-Rezayi RR state, $text{RR}_3$. We first establish that the state at $ u=13/5$ is an incompressible FQH state, with a GS protected by a finite excitation gap, with the shift in accordance with the RR state. Then, by performing a finite-size scaling analysis of the GS energies for $ u=12/5$ with different shifts, we find that the $text{RR}_3$ state has the lowest energy among different competing states in the thermodynamic limit. We find the fingerprint of $text{RR}_3$ topological order in the FQH $13/5$ and $12/5$ states, based on their entanglement spectrum and topological entanglement entropy, both of which strongly support their identification with the $text{RR}_3$ state. Furthermore, by considering the shift-free infinite-cylinder geometry, we expose two topologically-distinct GS sectors, one identity sector and a second one matching the non-Abelian sector of the Fibonacci anyonic quasiparticle, which serves as additional evidence for the $text{RR}_3$ state at $13/5$ and $12/5$.
The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on density-matrix renormalization group calculation, we provide a complete characterization of the universal properties of bosonic Moore-Read state on Haldane honeycomb lattice model at filling number $ u=1$ for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states, for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through inserting the $U(1)$ charge flux, it is found that two of the ground states can be adiabatically connected through a fermionic charge-$textit{e}$ QP being pumped from one edge to the other, while the ground state in Ising anyon sector evolves back to itself. Furthermore, we calculate the modular matrices $mathcal{S}$ and $mathcal{U}$, which contain all the information for the anyonic QPs. In particular, the extracted quantum dimensions, fusion rule and topological spins from modular matrices positively identify the emergence of non-Abelian statistics following the $SU(2)_2$ Chern-Simons theory.
398 - W. Zhu , S. S. Gong , 2014
The topological quantum spin liquids (SL) and the nature of quantum phase transitions between them have attracted intensive attentions for the past twenty years. The extended kagome spin-1/2 antiferromagnet emerges as the primary candidate for hosting both time reversal symmetry (TRS) preserving and TRS breaking SLs based on density matrix renormalization group simulations. To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum XY model with the nearest neighbor (NN) ($J_{xy}$), the second and third NN couplings ($J_{2xy}=J_{3xy}=J_{xy}$). We identify the TRS broken chiral SL (CSL) with the turn on of a small perturbation $J_{xy}sim 0.06 J_{xy}$, which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the $ u=1/2$ fractional quantum Hall state. On the other hand, the NN XY model ($J_{xy}=0$) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet excitations and also vanishing small spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. By following the evolution of entanglement spectrum, we find that the transition takes place through the coupling of the edge states with opposite chiralities, which merge into the bulk and become gapless neutral excitations. The effect of the NN spin-$z$ coupling $J_z$ is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.
The topological order is equivalent to the pattern of long-range quantum entanglements, which cannot be measured by any local observable. Here we perform an exact diagonalization study to establish the non-Abelian topological order through entanglement entropy measurement. We focus on the quasiparticle statistics of the non-Abelian Moore-Read and Read-Rezayi states on the lattice boson models. We identify multiple independent minimal entangled states (MESs) in the groundstate manifold on a torus. The extracted modular $mathcal{S}$ matrix from MESs faithfully demonstrates the Majorana quasiparticle or Fibonacci quasiparticle statistics, including the quasiparticle quantum dimensions and the fusion rules for such systems. These findings support that MESs manifest the eigenstates of quasiparticles for the non-Abelian topological states and encode the full information of the topological order.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا