Do you want to publish a course? Click here

A principal motivation to develop graphene for future devices has been its promise for quantum spintronics. Hyperfine and spin-orbit interactions are expected to be negligible in single-layer graphene. Spin transport experiments, on the other hand, show that graphenes spin relaxation is orders of magnitude faster than predicted. We present a quantum interference measurement that disentangles sources of magnetic and non-magnetic decoherence in graphene. Magnetic defects are shown to be the primary cause of spin relaxation, while spin-orbit interaction is undetectably small.
An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.
Magnetoconductance of a gated two-dimensional electron gas (2DEG) in the inversion layer on p-type HgCdTe crystal is investigated. At strong magnetic fields, characteristic features such as quantum Hall effect of a 2DEG with single subband occupation are observed. At weak magnetic fields, weak antilocalization effect in ballistic regime is observed. Phase coherence time and zero-field spin-splitting are extracted according to Golubs model. The temperature dependence of dephasing rate is consistent with Nyquist mechanism including both singlet and triplet channel interactions.
193 - Rui Yang , Guolin Yu , Xinzhi Liu 2010
We discover weak antilocalization effect of two-dimensional electron gas with one electric subband occupied in the inversion layer on p-type HgCdTe crystal. By fitting the model of Iordanskii, Lyanda-Geller and Pikus to data at varies temperatures and gate voltages, we extract phase coherence and spin-orbit scattering times as functions of temperature and carrier density. We find that Elliot-Yafet mechanism and Nyquist mechanism are the dominating spin decoherence and dephasing mechanisms, respectively. We also find that the Rashba parameter is relatively large and the dependence of Rashba parameter upon carrier density is not monotonic and an optimal carrier density exists for the maximization of spin-orbit coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا