Do you want to publish a course? Click here

393 - Rina Anno 2016
We construct a weak representation of the category of framed affine tangles on a disjoint union of triangulated categories ${mathcal D}_{2n}$. The categories we use are that of coherent sheaves on Springer fibers over a nilpotent element of $sl_{2n}$ with two equal Jordan blocks. This representation allows us to enumerate the irreducible objects in the heart of the exotic $t$-structure on ${mathcal D}_{2n}$ by crossingless matchings of $2n$ points on a circle. We also describe the algebra of endomorphisms of the direct sum of the irreducible objects.
307 - Rina Anno 2013
This paper has been withdrawn and replaced by arXiv:1309.5035. In this paper we describe some examples of so called spherical functors between triangulated categories, which generalize the notion of a spherical object. We also give sufficient conditions for a collection of spherical functors to yield a weak representation of the category of tangles, and prove a structure theorem for such representations under certain restrictions.
For two DG-categories A and B we define the notion of a spherical Morita quasi-functor A -> B. We construct its associated autoequivalences: the twist T of D(B) and the co-twist F of D(A). We give powerful sufficiency criteria for a quasi-functor to be spherical and for the twists associated to a collection of spherical quasi-functors to braid. Using the framework of DG-enhanced triangulated categories, we translate all of the above to Fourier-Mukai transforms between the derived categories of algebraic varieties. This is a broad generalisation of the results on spherical objects in [ST01] and on spherical functors in [Ann07]. In fact, this paper replaces [Ann07], which has a fatal gap in the proof of its main theorem. Though conceptually correct, the proof was impossible to fix within the framework of triangulated categories.
We provide examples of an explicit submanifold in Bridgeland stabilities space of a local Calabi-Yau, and propose a new variant of definition of stabilities on a triangulated category, which we call a real variation of stability conditions. We discuss its relation to Bridgelands definition; the main theorem provides an illustration of such a relation. We also state a conjecture by the second author and Okounkov relating this structure to quantum cohomology of symplectic resolutions and establish its validity in some special cases. More precisely, let X be the standard resolution of a transversal slice to an adjoint nilpotent orbit of a simple Lie algebra over C. An action of the affine braid group on the derived category of coherent sheaves on X and a collection of t-structures on this category permuted by the action have been constructed in arXiv:1101.3702 and arXiv:1001.2562 respectively. In this note we show that the t-structures come from points in a certain connected submanifold in the space of Bridgeland stability conditions. The submanifold is a covering of a submanifold in the dual space to the Grothendieck group, and the affine braid group acts by deck transformations. In the special case when dim (X)=2 a similar (in fact, stronger) result was obtained in arXiv:math/0508257.
We introduce a relative version of the spherical objects of Seidel and Thomas. Define an object E in the derived category D(Z x X) to be spherical over Z if the corresponding functor from D(Z) to D(X) gives rise to autoequivalences of D(Z) and D(X) in a certain natural way. Most known examples come from subschemes of X fibred over Z. This categorifies to the notion of an object of D(Z x X) orthogonal over Z. We prove that such an object is spherical over Z if and only if it has certain cohomological properties similar to those in the original definition of a spherical object. We then interpret this geometrically in the case when our objects are actual flat fibrations in X over Z.
We show that the adjunction counits of a Fourier-Mukai transform $Phi$ from $D(X_1)$ to $D(X_2)$ arise from maps of the kernels of the corresponding Fourier-Mukai transforms. In a very general setting of proper separable schemes of finite type over a field we write down these maps of kernels explicitly -- facilitating the computation of the twist (the cone of an adjunction counit) of $Phi$. We also give another description of these maps, better suited to computing cones if the kernel of $Phi$ is a pushforward from a closed subscheme $Z$ of $X_1 times X_2$. Moreover, we show that we can replace the condition of properness of the ambient spaces $X_1$ and $X_2$ by that of $Z$ being proper over them and still have this description apply as is. This can be used, for instance, to compute spherical twists on non-proper varieties directly and in full generality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا