Do you want to publish a course? Click here

BINGO is a concept for performing a 21cm intensity mapping survey using a single dish telescope. We briefly discuss the idea of intensity mapping and go on to define our single dish concept. This involves a sim 40 m dish with an array of sim 50 feed horns placed sim 90 m above the dish using a pseudo-correlation detection system based on room temperature LNAs and one of the celestial poles as references. We discuss how such an array operating between 960 and 1260 MHz could be used to measure the acoustic scale to 2.4% over the redshift range 0.13<z<0.48 in around 1 year of on-source integration time by performing a 10 deg times 200 deg drift scan survey with a resolution of sim 2/3 deg.
We discuss the detection of large scale HI intensity fluctuations using a single dish approach with the ultimate objective of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. We present 3D power spectra, 2D angular power spectra for individual redshift slices, and also individual line-of-sight spectra, computed using the S^3 simulated HI catalogue which is based on the Millennium Simulation. We consider optimal instrument design and survey strategies for a single dish observation at low and high redshift for a fixed sensitivity. For a survey corresponding to an instrument with T_sys=50 K, 50 feed horns and 1 year of observations, we find that at low redshift (z approx 0.3), a resolution of 40 arc min and a survey of 5000 deg^2 is close to optimal, whereas at higher redshift (z approx 0.9) a resolution of 10 arcmin and 500 deg^2 would be necessary. Continuum foreground emission from the Galaxy and extragalactic radio sources are potentially a problem. We suggest that it could be that the dominant extragalactic foreground comes from the clustering of very weak sources. We assess its amplitude and discuss ways by which it might be mitigated. We then introduce our concept for a single dish telescope designed to detect BAO at low redshifts. It involves an under-illumintated static 40 m dish and a 60 element receiver array held 90 m above the under-illuminated dish. Correlation receivers will be used with each main science beam referenced against an antenna pointing at one of the Celestial Poles for stability and control of systematics. We make sensitivity estimates for our proposed system and projections for the uncertainties on the power spectrum after 1 year of observations. We find that it is possible to measure the acoustic scale at zapprox 0.3 with an accuracy 2.4% and that w can be measured to an accuracy of 16%.
We investigate the correlations between optical and radio isophotal position angles for 14302 SDSS galaxies with $r$ magnitudes brighter than 18 and which have been associated with extended FIRST radio sources. We identify two separate populations of galaxies using the colour, concentration and their principal components. Surprisingly strong statistical alignments are found: late-type galaxies are overwhelmingly biased towards a position angle differences of $0^{circ}$ and early-type galaxies to $90^{circ}$. The late-type alignment can be easily understood in terms of the standard picture in which the radio emission is intimately related to areas of recent star-formation. In early-type galaxies the radio emission is expected to be driven by accretion on to a nuclear black hole. We argue that the observed correlation of the radio axis with the minor axis of the large-scale stellar distribution gives a fundamental insight into the structure of elliptical galaxies, for example, whether or not the nuclear kinematics are decoupled form the rest of the galaxy. Our results imply that the galaxies are oblate spheroids with their radio emission aligned with the minor axis. Remarkably the strength of the correlation of the radio major axis with the optical minor axis depends on radio loudness. Those objects with a low ratio of FIRST radio flux density to total stellar light show a strong minor axis correlation while the stronger radio sources do not. This may reflect different formation histories for the different objects and we suggest we may be seeing the different behaviour of rationally supported and non-rotationally supported ellipticals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا