Do you want to publish a course? Click here

The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of the CH3NH3PbI3 solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH3NH3PbI3 is thermodynamically unstable with respect to the phase separation into CH3NH3I + PbI2, i.e., the disproportionation is exothermic, independent of the humidity or oxygen in the atmosphere. When the structure is distorted to the low-temperature orthorhombic phase, the energetic cost of separation increases, but remains small. Contributions from vibrational and configurational entropy at room temperature have been considered, but the instability of CH3NH3PbI3 is unchanged. When I is replaced by Br or Cl, Pb by Sn, or the organic cation CH3NH3 by inorganic Cs, the perovskites become more stable and do not phase-separate spontaneously. Our study highlights that the poor chemical stability is intrinsic to CH3NH3PbI3 and suggests that element-substitution may solve the chemical stability problem in hybrid halide perovskite solar cells.
250 - Peng Xu , Jiaheng Yang , Min Liu 2015
Two-atom systems in small traps are of fundamental interest, first of all for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of $^{87}$Rb and $^{85}$Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. The developed experimental method allows us to single out a particular relaxation process and, in this sense, our experiment is a superclean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates.
Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing1,2. Majorana fermions are predicted to exist in a vortex core of superconducting topological insulators3. However, they are extremely difficult to be distinguished experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we overcome the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi2Te3/NbSe2. While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ~20nm away from the vortex center in Bi2Te3/NbSe2, primarily due to the Majorana fermion zero mode. While the Majorana mode is destroyed by reducing the distance between vortices, the zero bias peak splits as a conventional superconductor again. This work provides strong evidences of Majorana fermions and also suggests a possible route to manipulating them.
Topological superconductors (TSCs) have a full gap in the bulk and gapless surface states consisting of Majorana fermions, which have potential applications in fault-tolerant topological quantum computation. Because TSCs are very rare in nature, an alternative way to study the TSC is to artificially introduce superconductivity into the surface states of a topological insulator (TI) through proximity effect (PE)1-4. Here we report the first experimental realization of the PE induced TSC in Bi2Te3/NbSe2 thin films as demonstrated by the density of states probed using scanning tunneling microscope. We observe Abrikosov vortices and lower energy bound states on the surface of topological insulator and the dependence of superconducting coherence length on the film thickness and magnetic field, which are attributed to the superconductivity in the topological surface states. This work demonstrates the practical feasibility of fabricating a TSC with individual Majorana fermions inside superconducting vortex as predicted in theory and accomplishes the pre-requisite step towards searching for Majorana fermions in the PE induced TSCs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا