Do you want to publish a course? Click here

We show that accounting for internal character among interacting, heterogeneous entities generates rich phase transition behavior between isolation and cohesive dynamical grouping. Our analytical and numerical calculations reveal different critical points arising for different character-dependent grouping mechanisms. These critical points move in opposite directions as the populations diversity decreases. Our analytical theory helps explain why a particular class of universality is so common in the real world, despite fundamental differences in the underlying entities. Furthermore, it correctly predicts the non-monotonic temporal variation in connectivity observed recently in one such system.
There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens everyday health), industrial efficiency (affecting the nations economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent, can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا