No Arabic abstract
There is much disagreement concerning how best to control global carbon emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the global climate), peak pollution levels (affecting citizens everyday health), industrial efficiency (affecting the nations economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent, can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks.
Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed self-organised model for the evolution of complex networks. Vertices of the network are characterised by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.
A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the periphery by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as mediators and by the Euclidean distances. The adaptivity to heal over and to recover the performance of networking is also discussed for a change of environment in such disasters or battlefields on a geographical map. These properties will be useful for a resilient and scalable infrastructure of network systems even in emergent situations or poor environments.
One of the challenges for future infrastructures is how to design a network with high efficiency and strong connectivity at low cost. We propose self-organized geographical networks beyond the vulnerable scale-free structure found in many real systems. The networks with spatially concentrated nodes emerge through link survival and path reinforcement on routing flows in a wireless environment with a constant transmission range of a node. In particular, we show that adding some shortcuts induces both the small-world effect and a significant improvement of the robustness to the same level as in the optimal bimodal networks. Such a simple universal mechanism will open prospective ways for several applications in wide-area ad hoc networks, smart grids, and urban planning.
From the starting point of the well known Reynolds number of fluid turbulence we propose a control parameter $R$ for a wider class of systems including avalanche models that show Self Organized Criticality (SOC) and ecosystems. $R$ is related to the driving and dissipation rates and from similarity analysis we obtain a relationship $Rsim N^{beta_N}$ where $N$ is the number of degrees of freedom. The value of the exponent $beta_N$ is determined by detailed phenomenology but its sign follows from our similarity analysis. For SOC, $R=h/epsilon$ and we show that $beta_N<0$ hence we show independent of the details that the transition to SOC is when $R to 0$, in contrast to fluid turbulence, formalizing the relationship between turbulence (since $beta_N >0$, $R to infty$) and SOC ($R=h/epsilonto 0$). A corollary is that SOC phenomenology, that is, power law scaling of avalanches, can persist for finite $R$ with unchanged exponent if the system supports a sufficiently large range of lengthscales; necessary for SOC to be a candidate for physical systems. We propose a conceptual model ecosystem where $R$ is an observable parameter which depends on the rate of throughput of biomass or energy; we show this has $beta_N>0$, so that increasing $R$ increases the abundance of species, pointing to a critical value for species explosion.
In this paper, a simple dynamical model in which fractal networks are formed by self-organized critical (SOC) dynamics is proposed; the proposed model consists of growth and collapse processes. It has been shown that SOC dynamics are realized by the combined processes in the model. Thus, the distributions of the cluster size and collapse size follow a power-law function in the stationary state. Moreover, through SOC dynamics, the networks become fractal in nature. The criticality of SOC dynamics is the same as the universality class of mean-field theory. The model explains the possibility that the fractal nature in complex networks emerges by SOC dynamics in a manner similar to the case with fractal objects embedded in a Euclidean space.