Do you want to publish a course? Click here

Random graph generation is an important tool for studying large complex networks. Despite abundance of random graph models, constructing models with application-driven constraints is poorly understood. In order to advance state-of-the-art in this area, we focus on random graphs without short cycles as a stylized family of graphs, and propose the RandGraph algorithm for randomly generating them. For any constant k, when m=O(n^{1+1/[2k(k+3)]}), RandGraph generates an asymptotically uniform random graph with n vertices, m edges, and no cycle of length at most k using O(n^2m) operations. We also characterize the approximation error for finite values of n. To the best of our knowledge, this is the first polynomial-time algorithm for the problem. RandGraph works by sequentially adding $m$ edges to an empty graph with n vertices. Recently, such sequential algorithms have been successful for random sampling problems. Our main contributions to this line of research includes introducing a new approach for sequentially approximating edge-specific probabilities at each step of the algorithm, and providing a new method for analyzing such algorithms.
We consider a class of nonlinear mappings $mathsf{F}_{A,N}$ in $mathbb{R}^N$ indexed by symmetric random matrices $Ainmathbb{R}^{Ntimes N}$ with independent entries. Within spin glass theory, special cases of these mappings correspond to iterating the TAP equations and were studied by Bolthausen [Comm. Math. Phys. 325 (2014) 333-366]. Within information theory, they are known as approximate message passing algorithms. We study the high-dimensional (large $N$) behavior of the iterates of $mathsf{F}$ for polynomial functions $mathsf{F}$, and prove that it is universal; that is, it depends only on the first two moments of the entries of $A$, under a sub-Gaussian tail condition. As an application, we prove the universality of a certain phase transition arising in polytope geometry and compressed sensing. This solves, for a broad class of random projections, a conjecture by David Donoho and Jared Tanner.
We consider the general problem of finding the minimum weight $bm$-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}. These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem.
We consider the problem of learning a coefficient vector x_0in R^N from noisy linear observation y=Ax_0+w in R^n. In many contexts (ranging from model selection to image processing) it is desirable to construct a sparse estimator x. In this case, a popular approach consists in solving an L1-penalized least squares problem known as the LASSO or Basis Pursuit DeNoising (BPDN). For sequences of matrices A of increasing dimensions, with independent gaussian entries, we prove that the normalized risk of the LASSO converges to a limit, and we obtain an explicit expression for this limit. Our result is the first rigorous derivation of an explicit formula for the asymptotic mean square error of the LASSO for random instances. The proof technique is based on the analysis of AMP, a recently developed efficient algorithm, that is inspired from graphical models ideas. Simulations on real data matrices suggest that our results can be relevant in a broad array of practical applications.
We consider a one-sided assignment market or exchange network with transferable utility and propose a model for the dynamics of bargaining in such a market. Our dynamical model is local, involving iterative updates of offers based on estimated best alternative matches, in the spirit of pairwise Nash bargaining. We establish that when a balanced outcome (a generalization of the pairwise Nash bargaining solution to networks) exists, our dynamics converges rapidly to such an outcome. We extend our results to the cases of (i) general agent capacity constraints, i.e., an agent may be allowed to participate in multiple matches, and (ii) unequal bargaining powers (where we also find a surprising change in rate of convergence).
Approximate message passing algorithms proved to be extremely effective in reconstructing sparse signals from a small number of incoherent linear measurements. Extensive numerical experiments further showed that their dynamics is accurately tracked by a simple one-dimensional iteration termed state evolution. In this paper we provide the first rigorous foundation to state evolution. We prove that indeed it holds asymptotically in the large system limit for sensing matrices with independent and identically distributed gaussian entries. While our focus is on message passing algorithms for compressed sensing, the analysis extends beyond this setting, to a general class of algorithms on dense graphs. In this context, state evolution plays the role that density evolution has for sparse graphs. The proof technique is fundamentally different from the standard approach to density evolution, in that it copes with large number of short loops in the underlying factor graph. It relies instead on a conditioning technique recently developed by Erwin Bolthausen in the context of spin glass theory.
We establish the existence of free energy limits for several combinatorial models on Erd{o}s-R{e}nyi graph $mathbb {G}(N,lfloor cNrfloor)$ and random $r$-regular graph $mathbb {G}(N,r)$. For a variety of models, including independent sets, MAX-CUT, coloring and K-SAT, we prove that the free energy both at a positive and zero temperature, appropriately rescaled, converges to a limit as the size of the underlying graph diverges to infinity. In the zero temperature case, this is interpreted as the existence of the scaling limit for the corresponding combinatorial optimization problem. For example, as a special case we prove that the size of a largest independent set in these graphs, normalized by the number of nodes converges to a limit w.h.p. This resolves an open problem which was proposed by Aldous (Some open problems) as one of his six favorite open problems. It was also mentioned as an open problem in several other places: Conjecture 2.20 in Wormald [In Surveys in Combinatorics, 1999 (Canterbury) (1999) 239-298 Cambridge Univ. Press]; Bollob{a}s and Riordan [Random Structures Algorithms 39 (2011) 1-38]; Janson and Thomason [Combin. Probab. Comput. 17 (2008) 259-264] and Aldous and Steele [In Probability on Discrete Structures (2004) 1-72 Springer].
Bargaining networks model the behavior of a set of players that need to reach pairwise agreements for making profits. Nash bargaining solutions are special outcomes of such games that are both stable and balanced. Kleinberg and Tardos proved a sharp algorithmic characterization of such outcomes, but left open the problem of how the actual bargaining process converges to them. A partial answer was provided by Azar et al. who proposed a distributed algorithm for constructing Nash bargaining solutions, but without polynomial bounds on its convergence rate. In this paper, we introduce a simple and natural model for this process, and study its convergence rate to Nash bargaining solutions. At each time step, each player proposes a deal to each of her neighbors. The proposal consists of a share of the potential profit in case of agreement. The share is chosen to be balanced in Nashs sense as far as this is feasible (with respect to the current best alternatives for both players). We prove that, whenever the Nash bargaining solution is unique (and satisfies a positive gap condition) this dynamics converges to it in polynomial time. Our analysis is based on an approximate decoupling phenomenon between the dynamics on different substructures of the network. This approach may be of general interest for the analysis of local algorithms on networks.
Network alignment generalizes and unifies several approaches for forming a matching or alignment between the vertices of two graphs. We study a mathematical programming framework for network alignment problem and a sparse variation of it where only a small number of matches between the vertices of the two graphs are possible. We propose a new message passing algorithm that allows us to compute, very efficiently, approximate solutions to the sparse network alignment problems with graph sizes as large as hundreds of thousands of vertices. We also provide extensive simulations comparing our algorithms with two of the best solvers for network alignment problems on two synthetic matching problems, two bioinformatics problems, and three large ontology alignment problems including a multilingual problem with a known labeled alignment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا