Do you want to publish a course? Click here

We show that if X is a piecewise Euclidean 2-complex with a cocompact isometry group, then every 2-quasiflat in X is at finite Hausdorff distance from a subset which is locally flat outside a compact set, and asymptotically conical.
Let $Gamma$ be a finite index subgroup of the mapping class group $MCG(Sigma)$ of a closed orientable surface $Sigma$, possibly with punctures. We give a precise condition (in terms of the Nielsen-Thurston decomposition) when an element $ginGamma$ has positive stable commutator length. In addition, we show that in these situations the stable commutator length, if nonzero, is uniformly bounded away from 0. The method works for certain subgroups of infinite index as well and we show $scl$ is uniformly positive on the nontrivial elements of the Torelli group. The proofs use our earlier construction in the paper Constructing group actions on quasi-trees and applications to mapping class groups of group actions on quasi-trees.
We show that for acylindrically hyperbolic groups $Gamma$ (with no nontrivial finite normal subgroups) and arbitrary unitary representation $rho$ of $Gamma$ in a (nonzero) uniformly convex Banach space the vector space $H^2_b(Gamma;rho)$ is infinite dimensional. The result was known for the regular representations on $ell^p(Gamma)$ with $1<p<infty$ by a different argument. But our result is new even for a non-abelian free group in this great generality for representations, and also the case for acylindrically hyperbolic groups follows as an application.
When two free factors A and B of a free group F_n are in general position we define the projection of B to the splitting complex (alternatively, the complex of free factors) of A. We show that the projections satisfy properties analogous to subsurface projections introduced by Masur and Minsky. We use the subfactor projections to construct an action of Out(F_n) on a finite product of hyperbolic spaces where every automorphism with exponential growth acts with positive translation length. We also prove a version of the Bounded geodesic image theorem. In the appendix, we give a sketch of the proof of the Handel-Mosher hyperbolicity theorem for the splitting complex using (liberal) folding paths.
This is the first in a planned series of papers giving an alternate approach to Zlil Selas work on the Tarski problems. The present paper is an exposition of work of Kharlampovich-Myasnikov and Sela giving a parametrization of Hom(G,F) where G is a finitely generated group and F is a non-abelian free group.
We develop the geometry of folding paths in Outer space and, as an application, prove that the complex of free factors of a free group of finite rank is hyperbolic.
For any finite collection $f_i$ of fully irreducible automorphisms of the free group $F_n$ we construct a connected $delta$-hyperbolic $Out(F_n)$-complex in which each $f_i$ has positive translation length.
For a fully irreducible automorphism phi of the free group F_k we compute the asymptotics of the intersection number n mapsto i(T,Tphi^n) for trees T,T in Outer space. We also obtain qualitative information about the geometry of the Guirardel core for the trees T and Tphi^n for n large.
119 - Mladen Bestvina , Kai-Uwe Bux , 2007
We prove that the cohomological dimension of the Torelli group for a closed connected orientable surface of genus g at least 2 is equal to 3g-5. This answers a question of Mess, who proved the lower bound and settled the case of g=2. We also find the cohomological dimension of the Johnson kernel (the subgroup of the Torelli group generated by Dehn twists about separating curves) to be 2g-3. For g at least 2, we prove that the top dimensional homology of the Torelli group is infinitely generated. Finally, we give a new proof of the theorem of Mess that gives a precise description of the Torelli group in genus 2. The main tool is a new contractible complex, called the complex of cycles, on which the Torelli group acts.
We study atomic right-angled Artin groups -- those whose defining graph has no cycles of length less than five, and no separating vertices, separating edges, or separating vertex stars. We show that these groups are not quasi-isometrically rigid, but that an intermediate form of rigidity does hold. We deduce from this that two atomic groups are quasi-isometric iff they are isomorphic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا