Do you want to publish a course? Click here

Observations of the Suns surface suggest a nonuniform radiated flux as related to the presence of bright active regions and darker coronal holes. The variations of the FUV/EUV source radiation can be expected to affect the Lyman-alpha backscatter glow measured by spaceborne instruments. In particular, inferring the heliolatitudinal structure of the solar wind from helioglow variations in the sky can be quite challenging if the heliolatitudinal structure of the solar FUV/EUV radiation is not properly included in the modeling of the heliospheric glow. We present results of analysis of the heliolatitudinal structure of the solar Lyman-alpha radiation as inferred from comparison of SOHO/SWAN satellite observations of the helioglow intensity with modeling results obtained from the recently-developed WawHelioGlow model. We find that in addition to time-dependent heliolatitudinal anisotropy of the solar wind, also time-dependent heliolatitudinal variations of the intensity of the solar Lyman-alpha and photoionizing emissions must be taken into account to reproduce the observed helioglow modulation in the sky. We present a particular latitudinal and temporal dependence of the solar Lyman-alpha flux obtained as a result of our analysis. We analyze also differences between polar-equatorial anisotropies close to the solar surface and seen by an observer located far from the Sun. We discuss the implications of these findings for the interpretation of heliospheric-glow observations.
In observations of diffuse emissions like, e.g., the Lyman-$alpha$ heliospheric glow, contributions to the observed signal from point sources (e.g., stars) are considered as a contamination. There are relatively few brightest point sources that are usually properly resolved and can be subtracted or masked. We present results of analysis of the distribution of point sources using UV sky-survey maps from the SOHO/SWAN instrument and spectrophotometry data from the IUE satellite. The estimated distribution suggests that the number of these sources increases with decreasing intensity. Below a certain threshold, these sources cannot be resolved against the diffuse signal from the backscatter glow, that results in a certain physical background from unresolved point sources. Detection, understanding and subtraction of the point-source background has implications for proper characterization of diffuse emissions and accurate comparison with models. Stars are also often used as standard candles for in-flight calibration of satellite UV observations, thus proper understanding of signal contributions from the point sources is important for the calibration process. We present a general approach to quantify the background radiation level from unresolved point sources in UV sky-survey maps. In the proposed method, a distribution of point sources as a function of their intensity is properly integrated to compute the background signal level. These general considerations are applied to estimate the unresolved-point-sources background in the SOHO/SWAN observations that on average amounts to $28.9$ R. We discuss also the background radiation anisotropies and general questions related to modeling the point-source contributions to diffuse UV-emission observations.
We present a modification of a model of solar cycle evolution of the solar Lyman-alpha line profile, along with a sensitivity study of interstellar neutral H hydrogen to uncertainties in radiation pressure level. The line profile model, originally developed by Kowalska-Leszczynska et al. 2018a, is parametrized by the composite solar Lyman-alpha flux, which recently was revised Machol et al. 2019. We present modified parameters of the previously-developed model of solar radiation pressure for neutral hydrogen and deuterium atoms in the heliosphere. The mathematical function used in the model, as well as the fitting procedure, remain unchanged. We show selected effects of the model modification on ISN H properties in the heliosphere and we discuss the sensitivity of these quantities to uncertainties in the calibration of the composite Lyman-alpha series.
The interstellar neutral (ISN) gas enters the heliosphere and is detected at a few au from the Sun, as demonstrated by Ulysses and the nterstellar Boundary Explorer (IBEX) missions. Ulysses observed ISN gas from different vantage points in a polar orbit from 1994 to 2007, while IBEX has been observing in an Earth orbit in a fixed direction relative to the Sun from 2009. McComas et al. 2018 reported about an IMAP-Lo detector on board the Interstellar Mapping and Acceleration Probe (IMAP), with an ability to track the ISN flux in the sky. We present observation geometries for ISN gas for a detector with the capability to adjust the boresight direction along the Earth orbit over a year within a multichoice ISN observation scheme. We study science opportunities from the observations as a function of time during a year and the phase of solar activity. We identify observation geometries and determine the observation seasons separately for various ISN species and populations. We find that using an adjustable viewing direction allows for ISN gas observations in the upwind hemisphere, where the signal is not distorted by gravitational focusing, in addition to the viewing of ISN species throughout the entire year. Moreover, we demonstrate that with appropriately adjusted observation geometries, primary and secondary populations can be fully separated. Additionally, we show that atoms of ISN gas on indirect trajectories are accessible for detection, and we present their impact on the study of the ionization rates for ISN species.
Interaction of the solar wind with interstellar matter involves, among other, charge exchange between interstellar neutral atoms and plasma, which results in the creation of secondary population of interstellar neutral (ISN) atoms. The secondary population of interstellar He was detected by Interstellar Boundary Explorer (IBEX), but interpretation of these measurements was mostly based on an approximation that the primary interstellar neutral population and the secondary population were non-interacting homogeneous Maxwell-Boltzmann functions in the outer heliosheath. We simulate the distribution function in the outer heliosheath and inside the heliopause using method of characteristics with statistical weights obtained from solutions of the production and loss equations for the secondary atoms due to charge-exchange collisions in the outer heliosheath. We show that the two-Maxwellian approximation for the distribution function of neutral He is not a good approximation within the outer heliosheath but a reasonable one inside the termination shock. This is due to a strong selection effect: the He atoms able to penetrate inside the termination shock are a small, peculiar subset of the entire secondary He population. Nevertheless, the two-Maxwellian approximation reproduces the density distribution of ISN He inside the termination shock well and enables a realistic reproduction of the orientation of the plane defined by the Suns velocity vector through the local interstellar matter and the vector of unperturbed interstellar magnetic field.
We study the distribution of the interstellar neutral (ISN) gas density and the pick-up ion (PUI) density of hydrogen, helium, neon, and oxygen in the heliosphere for heliocentric distances from inside 1 au up to the solar wind termination shock (TS), both in and out of the ecliptic plane. We discuss similarities and differences in the large-scale structures of the ISN gas and PUIs formed in the heliosphere between various species. We discuss the distribution of ISN gas and PUI densities for two extreme phases of the solar activity cycle, it is the solar minimum and the solar maximum. We identify the location of the ISN gas density cavity of various species. We study the relative abundance ratios of Ne/O, H/He, Ne/He, and O/He for ISN gas and PUIs densities and their variation with location in the heliosphere. We also discuss the modulation of relative abundance ratios of ISN gas and PUIs along the TS. We conclude that the preferable locations for detection of He$^+$ and Ne$^+$ PUIs are in the downwind hemisphere within 1~au, whereas for H$^+$ and O$^+$ PUIs the preferable locations for detection are for distances from Jupiter to Pluto orbits.
Solar ionizing factors are responsible for modulation of interstellar neutral gas and its derivative populations inside the heliosphere. We provide an overview of the current state of knowledge about them for heliospheric particles inside the termination shock. We discuss charge exchange with solar wind particles, photoionization, and electron impact ionization for hydrogen, oxygen, neon, and helium from 1985 to 2018 both in the ecliptic plane and in the polar regions. We discuss ionization rates as a function of time, distance to the Sun, and latitude. We compare the total ionization rates among the species within a consistent and homogeneous system of calculation of the ionization rates. The highest total ionization rates at 1 au in the ecliptic plane are for hydrogen and oxygen, and the lowest are for helium. In the polar regions, the strongest ionization losses are for oxygen, regardless of the solar activity. Photoionization is the dominant ionization reaction for helium and neon, and a reaction of high significance for oxygen. Charge exchange with solar wind particles is the dominant ionization reaction for hydrogen and the second important ionization reaction for oxygen. Electron impact ionization is an important ionization reaction for Ne and He, with the contribution to the total ionization rates stronger within 1 au and smaller outside. The total ionization rates for He and Ne vary in time with the solar activity, whereas the total ionization rates for H and O follow the cyclic solar wind variations out of the ecliptic plane and aperiodic variations in the ecliptic plane.
Following the derivation of a more accurate model of the evolution of the solar Lyman-$alpha$ line with the changing solar activity by Kowalska-leszczynska et al. 2018 (IKL18) than the formerly used model by Tarnopolski et al. 2009 (ST09), we investigate potential consequences that adoption of the resulting refined model of radiation pressure has for the model distribution of interstellar neutral (ISN) H in the inner heliosphere and on the interpretation of selected observations. We simulated the ISN H densities using the two alternative radiation pressure models and identical models of all other factors affecting the ISN H distribution. We found that during most of the solar cycle, the IKL18 model predicts larger densities of ISN H and PUIs than ST09 in the inner heliosphere, especially in the downwind hemisphere. However, the density of ISN H at the termination shock estimated by Bzowski et al. 2008 obtained using ST09 does not need revision, and the detection of ISN D by IBEX is supported. However, we point out the existence of a considerable absorption of a portion of the solar Lyman-$alpha$ spectral flux inside the heliosphere. Therefore, the model of radiation pressure for ISN H is still likely to need revision, and hence the available models of ISN H are not self-consistent.
Direct-sampling observations of interstellar neutral (ISN) He by Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extended the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009-2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensors conversion surface separately for each ESA step of the instrument. We found that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.
Recent studies of interstellar neutral (ISN) hydrogen observed by the Interstellar Boundary Explorer (IBEX) suggested that the present understanding of the radiation pressure acting on hydrogen atoms in the heliosphere should be revised. There is a significant discrepancy between theoretical predictions of the ISN H signal using the currently used model of the solar Lyman-alpha profile by Tarnopolski et al. 2009 (TB09) and the signal due to ISN H observed by IBEX-Lo. We developed a new model of evolution of the solar Lyman-alpha profile that takes into account all available observations of the full-disk solar Lyman-alpha profiles from SUMER/SOHO, provided by Lemaire et al. 2015 (L15), covering practically the entire 23rd solar cycle. The model has three components that reproduce different features of the profile. The main shape of the emission line that is produced in the chromosphere is modeled by the kappa function; the central reversal due to absorption in the transition region is modeled by the Gauss function; the spectral background is represented by the linear function. The coefficients of all those components are linear functions of the line-integrated full-disk Lyman-alpha irradiance, which is the only free parameter of the model. The new model features potentially important differences in comparison with the model by TB09, which was based on a limited set of observations. This change in the understanding of radiation pressure, especially during low solar activity, may significantly affect the interstellar H and D distributions in the inner heliosphere and their derivative populations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا