Do you want to publish a course? Click here

Science Opportunities from Observations of the Interstellar Neutral Gas with Adjustable Boresight Direction

132   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interstellar neutral (ISN) gas enters the heliosphere and is detected at a few au from the Sun, as demonstrated by Ulysses and the nterstellar Boundary Explorer (IBEX) missions. Ulysses observed ISN gas from different vantage points in a polar orbit from 1994 to 2007, while IBEX has been observing in an Earth orbit in a fixed direction relative to the Sun from 2009. McComas et al. 2018 reported about an IMAP-Lo detector on board the Interstellar Mapping and Acceleration Probe (IMAP), with an ability to track the ISN flux in the sky. We present observation geometries for ISN gas for a detector with the capability to adjust the boresight direction along the Earth orbit over a year within a multichoice ISN observation scheme. We study science opportunities from the observations as a function of time during a year and the phase of solar activity. We identify observation geometries and determine the observation seasons separately for various ISN species and populations. We find that using an adjustable viewing direction allows for ISN gas observations in the upwind hemisphere, where the signal is not distorted by gravitational focusing, in addition to the viewing of ISN species throughout the entire year. Moreover, we demonstrate that with appropriately adjusted observation geometries, primary and secondary populations can be fully separated. Additionally, we show that atoms of ISN gas on indirect trajectories are accessible for detection, and we present their impact on the study of the ionization rates for ISN species.



rate research

Read More

Direct-sampling observations of interstellar neutral (ISN) He by Interstellar Boundary Explorer (IBEX) provide valuable insight into the physical state of and processes operating in the interstellar medium ahead of the heliosphere. The ISN He atom signals are observed at the four lowest ESA steps of the IBEX-Lo sensor. The observed signal is a mixture of the primary and secondary components of ISN He and H. Previously, only data from one of the ESA steps have been used. Here, we extended the analysis to data collected in the three lowest ESA steps with the strongest ISN He signal, for the observation seasons 2009-2015. The instrument sensitivity is modeled as a linear function of the atom impact speed onto the sensors conversion surface separately for each ESA step of the instrument. We found that the sensitivity increases from lower to higher ESA steps, but within each of the ESA steps it is a decreasing function of the atom impact speed. This result may be influenced by the hydrogen contribution, which was not included in the adopted model, but seems to exist in the signal. We conclude that the currently accepted temperature of ISN He and velocity of the Sun through the interstellar medium do not need a revision, and we sketch a plan of further data analysis aiming at investigating ISN H and a better understanding of the population of ISN He originating in the outer heliosheath.
We use observations from the Interstellar Boundary Explorer (IBEX) and Ulysses to explore the possibility that the interstellar neutral helium flowing through the inner solar system possesses an intrinsic non-Maxwellian velocity distribution. In fitting the IBEX and Ulysses data, we experiment with both a kappa distribution and a bi-Maxwellian, instead of the usual Maxwellian assumption. The kappa distribution does not improve the quality of fit to either the IBEX or Ulysses data, and we find lower limits to the kappa parameter of kappa>12.1 and kappa>6.0 from the IBEX and Ulysses analyses, respectively. In contrast, we do find evidence that a bi-Maxwellian improves fit quality. For IBEX, there is a clear preferred bi-Maxwellian solution with T_perp/T_par=0.62+/-0.11 oriented about an axis direction with ecliptic coordinates (lambda_axis,b_axis)=(57.2+/-8.9 deg,-1.6+/-5.9 deg). The Ulysses data provide support for this result, albeit with lower statistical significance. The axis direction is close to the ISM flow direction, in a heliocentric rest frame, and is therefore unlikely to be indicative of velocity distribution asymmetries intrinsic to the ISM. It is far more likely that these results indicate the presence of asymmetries induced by interactions in the outer heliosphere.
Interstellar neutral gas atoms penetrate the heliopause and reach 1~au, where they are detected by IBEX. The flow of neutral interstellar helium through the perturbed interstellar plasma in the outer heliosheath (OHS) results in creation of the secondary population of interstellar He atoms, the so-called Warm Breeze, due to charge exchange with perturbed ions. The secondary population brings the imprint of the OHS conditions to the IBEX-Lo instrument. Based on a global simulation of the heliosphere with measurement-based parameters and detailed kinetic simulation of the filtration of He in the OHS, we find the number density of interstellar He$^+$ population at $(8.98pm 0.12)times 10^{-3}$~cm$^{-3}$. With this, we obtain the absolute density of interstellar H$^+$ $5.4times 10^{-2}$~cm$^{-3}$ and electrons $6.3times 10^{-2}$~cm$^{-3}$, and ionization degrees of H 0.26 and He 0.37. The results agree with estimates of the Very Local Interstellar Matter parameters obtained from fitting the observed spectra of diffuse interstellar EUV and soft X-Ray background.
We perform a validation study of the latest version of the Alfv{e}n Wave Solar atmosphere Model (AWSoM) within the Space Weather Modeling Framework (SWMF). To do so, we compare the simulation results of the model with a comprehensive suite of observations for Carrington rotations representative of the solar minimum conditions extending from the solar corona to the heliosphere up to the Earth. In the low corona ($r < 1.25$ Rs), we compare with EUV images from both STEREO-A/EUVI and SDO/AIA and to three-dimensional (3-D) tomographic reconstructions of the electron temperature and density based on these same data. We also compare the model to tomographic reconstructions of the electron density from SOHO/LASCO observations ($2.55 < r < 6.0$Rs). In the heliosphere, we compare model predictions of solar wind speed with velocity reconstructions from InterPlanetary Scintillation (IPS) observations. For comparison with observations near the Earth, we use OMNI data. Our results show that the improved AWSoM model performs well in quantitative agreement with the observations between the inner corona and 1 AU. The model now reproduces the fast solar wind speed in the polar regions. Near the Earth, our model shows good agreement with observations of solar wind velocity, proton temperature and density. AWSoM offers an extensive application to study the solar corona and larger heliosphere in concert with current and future solar missions as well as being well suited for space weather predictions.
With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis summarized by McComas et al.2015b, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010---2014 and cover the region in the Earths orbit where the Warm Breeze persists. We used the same simulation model and a very similar parameter fitting method to that used for the analysis of ISN He. We approximated the parent population of the Warm Breeze in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and found a temperature of $sim 9,500$ K, an inflow speed of 11.3 km s$^{-1}$, and an inflow longitude and latitude in the J2000 ecliptic coordinates $251.6^circ$, $12.0^circ$. The abundance of the Warm Breeze relative to the interstellar neutral He is 5.7% and the Mach number is 1.97. The newly found inflow direction of the Warm Breeze, the inflow directions of ISN H and ISN He, and the direction to the center of IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the Warm Breeze. This co-planarity lends support to the hypothesis that the Warm Breeze is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field. The common plane for the direction of inflow of ISN gas, ISN H, the Warm Breeze, and the local interstellar magnetic field %includes the Sun and is given by the normal direction: ecliptic longitude $349.7^circ pm 0.6^circ$ and latitude $35.7^circ pm 0.6^circ$ in the J2000 coordinates, with the correlation coefficient of 0.85.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا