Do you want to publish a course? Click here

This article describes new polar angle-dependent magnetoresistance (ADMR) measurements in the overdoped cuprate Tl$_2$Ba$_2$CuO$_{6+delta}$ over an expanded range of temperatures and azimuthal angles. These detailed measurements re-affirm the analysis of earlier data taken over a more restricted temperature range and at a single azimuthal orientation, in particular the delineation of the intraplane scattering rate into isotropic and anisotropic components. These new measurements also reveal additional features in the temperature and momentum dependence of the scattering rate, including anisotropy in the $T^2$ component and the preservation of both the $T$-linear and $T^2$ components up to 100 K. The resultant form of the scattering rate places firm constraints on the development of any forthcoming theoretical framework for the normal state charge response of high temperature superconducting cuprates.
Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4 are fitted using the Ong construction and band parameters inferred from angle-resolved photoemission. Within a band picture, the low temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean-free-path $ell$. This violation of the isotropic-$ell$ approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We show that both band anisotropy and anisotropy in the elastic scattering channel strongly renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide doping and temperature range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا