Do you want to publish a course? Click here

We consider online convex optimization when a number k of data points are outliers that may be corrupted. We model this by introducing the notion of robust regret, which measures the regret only on rounds that are not outliers. The aim for the learner is to achieve small robust regret, without knowing where the outliers are. If the outliers are chosen adversarially, we show that a simple filtering strategy on extreme gradients incurs O(k) additive overhead compared to the usual regret bounds, and that this is unimprovable, which means that k needs to be sublinear in the number of rounds. We further ask which additional assumptions would allow for a linear number of outliers. It turns out that the usual benign cases of independently, identically distributed (i.i.d.) observations or strongly convex losses are not sufficient. However, combining i.i.d. observations with the assumption that outliers are those observations that are in an extreme quantile of the distribution, does lead to sublinear robust regret, even though the expected number of outliers is linear.
We provide a new adaptive method for online convex optimization, MetaGrad, that is robust to general convex losses but achieves faster rates for a broad class of special functions, including exp-concave and strongly convex functions, but also various types of stochastic and non-stochastic functions without any curvature. We prove this by drawing a connection to the Bernstein condition, which is known to imply fast rates in offline statistical learning. MetaGrad further adapts automatically to the size of the gradients. Its main feature is that it simultaneously considers multiple learning rates, which are weighted directly proportional to their empirical performance on the data using a new meta-algorithm. We provide thr
We revisit the classic regret-minimization problem in the stochastic multi-armed bandit setting when the arm-distributions are allowed to be heavy-tailed. Regret minimization has been well studied in simpler settings of either bounded support reward distributions or distributions that belong to a single parameter exponential family. We work under the much weaker assumption that the moments of order $(1+epsilon)$ are uniformly bounded by a known constant B, for some given $epsilon > 0$. We propose an optimal algorithm that matches the lower bound exactly in the first-order term. We also give a finite-time bound on its regret. We show that our index concentrates faster than the well known truncated or trimmed empirical mean estimators for the mean of heavy-tailed distributions. Computing our index can be computationally demanding. To address this, we develop a batch-based algorithm that is optimal up to a multiplicative constant depending on the batch size. We hence provide a controlled trade-off between statistical optimality and computational cost.
Conditional value-at-risk (CVaR) and value-at-risk (VaR) are popular tail-risk measures in finance and insurance industries as well as in highly reliable, safety-critical uncertain environments where often the underlying probability distributions are heavy-tailed. We use the multi-armed bandit best-arm identification framework and consider the problem of identifying the arm from amongst finitely many that has the smallest CVaR, VaR, or weighted sum of CVaR and mean. The latter captures the risk-return trade-off common in finance. Our main contribution is an optimal $delta$-correct algorithm that acts on general arms, including heavy-tailed distributions, and matches the lower bound on the expected number of samples needed, asymptotically (as $delta$ approaches $0$). The algorithm requires solving a non-convex optimization problem in the space of probability measures, that requires delicate analysis. En-route, we develop new non-asymptotic empirical likelihood-based concentration inequalities for tail-risk measures which are tighter than those for popular truncation-based empirical estimators.
An efficient computational approach for optimal reconstructing parameters of binary-type physical properties for models in biomedical applications is developed and validated. The methodology includes gradient-based multiscale optimization with multilevel control space reduction by using principal component analysis (PCA) coupled with dynamical control space upscaling. The reduced dimensional controls are used interchangeably at fine and coarse scales to accumulate the optimization progress and mitigate side effects at both scales. Flexibility is achieved through the proposed procedure for calibrating certain parameters to enhance the performance of the optimization algorithm. Reduced size of control spaces supplied with adjoint-based gradients obtained at both scales facilitate the application of this algorithm to models of higher complexity and also to a broad range of problems in biomedical sciences. This technique is shown to outperform regular gradient-based methods applied to fine scale only in terms of both qualities of binary images and computing time. Performance of the complete computational framework is tested in applications to 2D inverse problems of cancer detection by the electrical impedance tomography (EIT). The results demonstrate the efficient performance of the new method and its high potential for minimizing possibilities for false positive screening and improving the overall quality of the EIT-based procedures.
We study reward maximisation in a wide class of structured stochastic multi-armed bandit problems, where the mean rewards of arms satisfy some given structural constraints, e.g. linear, unimodal, sparse, etc. Our aim is to develop methods that are flexible (in that they easily adapt to different structures), powerful (in that they perform well empirically and/or provably match instance-dependent lower bounds) and efficient in that the per-round computational burden is small. We develop asymptotically optimal algorithms from instance-dependent lower-bounds using iterative saddle-point solvers. Our approach generalises recent iterative methods for pure exploration to reward maximisation, where a major challenge arises from the estimation of the sub-optimality gaps and their reciprocals. Still we manage to achieve all the above desiderata. Notably, our technique avoids the computational cost of the full-blown saddle point oracle employed by previous work, while at the same time enabling finite-time regret bounds. Our experiments reveal that our method successfully leverages the structural assumptions, while its regret is at worst comparable to that of vanilla UCB.
71 - Y. Jiang , M. Kool 2020
The $mathrm{SU}(r)$ Vafa-Witten partition function, which virtually counts Higgs pairs on a projective surface $S$, was mathematically defined by Tanaka-Thomas. On the Langlands dual side, the first-named author recently introduced virtual counts of Higgs pairs on $mu_r$-gerbes. In this paper, we instead use Yoshiokas moduli spaces of twisted sheaves. Using Chern character twisted by rational $B$-field, we give a new mathematical definition of the $mathrm{SU}(r) / mathbb{Z}_r$ Vafa-Witten partition function when $r$ is prime. Our definition uses the period-index theorem of de Jong. $S$-duality, a concept from physics, predicts that the $mathrm{SU}(r)$ and $mathrm{SU}(r) / mathbb{Z}_r$ partitions functions are related by a modular transformation. We turn this into a mathematical conjecture, which we prove for all $K3$ surfaces and prime numbers $r$.
We study Online Convex Optimization in the unbounded setting where neither predictions nor gradient are constrained. The goal is to simultaneously adapt to both the sequence of gradients and the comparator. We first develop parameter-free and scale-free algorithms for a simplified setting with hints. We present t
Pure exploration (aka active testing) is the fundamental task of sequentially gathering information to answer a query about a stochastic environment. Good algorithms make few mistakes and take few samples. Lower bounds (for multi-armed bandit models with arms in an exponential family) reveal that the sample complexity is determined by the solution to an optimisation problem. The existing state of the art algorithms achieve asymptotic optimality by solving a plug-in estimate of that optimisation problem at each step. We interpret the optimisation problem as an unknown game, and propose sampling rules based on iterative strategies to estimate and converge to its saddle point. We apply no-regret learners to obtain the first finite confidence guarantees that are adapted to the exponential family and which apply to any pure exploration query and bandit structure. Moreover, our algorithms only use a best response oracle instead of fully solving the optimisation problem.
We aim to design adaptive online learning algorithms that take advantage of any special structure that might be present in the learning task at hand, with as little manual tuning by the user as possible. A fundamental obstacle that comes up in the design of such adaptive algorithms is to calibrate a so-called step-size or learning rate hyperparameter depending on variance, gradient norms, etc. A recent technique promises to overcome this difficulty by maintaining multiple learning rates in parallel. This technique has been applied in the MetaGrad algorithm for online convex optimization and the Squint algorithm for prediction with expert advice. However, in both cases the user still has to provide in advance a Lipschitz hyperparameter that bounds the norm of the gradients. Although this hyperparameter is typically not available in advance, tuning it correctly is crucial: if it is set too small, the methods may fail completely; but if it is taken too large, performance deteriorates significantly. In the present work we remove this Lipschitz hyperparameter by designing n
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا