Do you want to publish a course? Click here

During the last 10 years, INTEGRAL made a unique contribution to the study of accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14 sources now known of this class. Besides increasing the number of known AMXPs, INTEGRAL also carried out observations of these objects above 20 keV, substantially advancing our understanding of their behaviour. We present here a review of all the AMXPs observed with INTEGRAL and discuss the physical interpretation of their behaviour in the X-ray domain. We focus in particular on the lightcurve profile during outburst, as well as the timing, spectral, and thermonuclear type-I X-ray bursts properties.
XSSJ1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGLJ1227.9-4852/2FGLJ1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity low-mass X-ray binary (LMXB), but its nature is still unclear. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. The X-ray history of XSSJ1227.0-4859 over 7yr shows a persistent and rather stable low-luminosity (~6x10^33 d_{1,kpc}^2 erg/s) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGLJ1227.7-4853 is also stable over an overlapping period of 4.7,yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at ~13,kK and a cool one at ~4.6,kK. The latter would suggest a late-type K2-K5 companion star, a distance range of1.4--3.6kpc and an orbital period of 7--9 h. A near-UV variability (>6,h) also suggests a longer orbital period than previously estimated. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case it would be the first associated with a high-energy gamma-ray source.
We analyze the spectral and timing properties of IGR J17498-2921 and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT_e ~ 50 keV, soft seed photons of kT_bb ~ 1 keV, and Thomson optical depth taut ~ 1 in a slab geometry. The slab area corresponds to a black body radius of R_bb ~9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 milliseconds up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ~ -60mu s with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of dot{m} (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.
IGR J17511-3057 is the second X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about a month from September 13, 2009. The broad-band average spectrum is well described by thermal Comptonization with an electron temperature of kT_e ~ 25 keV, soft seed photons of kT_bb ~ 0.6 keV, and Thomson optical depth tau_T ~ 2 in a slab geometry. During the outburst the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth being constant within errors. We fitted the outburst profile with the exponential model, and using the disk instability model we inferred the outer disk radius to be (4.8 - 5.4) times 1010 cm. The INTEGRAL and RXTE data reveal the X-ray pulsation at a period of 4.08 milliseconds up to ~ 120 keV. The pulsed fraction is shown to decrease from ~22% at 3 keV to a constant pulsed fraction of ~17-18% between 7-30 keV, and then to decrease again down to ~13% at 60 keV. The nearly sinusoidal pulses show soft lags monotonically increasing with energy to about 0.2 ms at 10-20 keV similar to those observed in other accreting pulsars. The short burst profiles indicate hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of 2 times solar. However, the variation of burst recurrence time as a function of m (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.
The nature of the hard X-ray source XSSJ12270-4859 is still unclear though it was claimed to be a magnetic Cataclysmic Variable. We here present a broad-band X-ray and gamma ray study based on a recent XMM-Newton observation and archival INTEGRAL and RXTE data. From the Fermi/LAT 1-year point source catalogue, we tentatively associate XSSJ12270-4859 with 1FGLJ1227.9-4852, a source of high energy gamma rays with emission up to 10GeV. We complement the study with UV photometry from XMM-Newton and ground-based optical and near-IR photometry. The X-ray emission is highly variable showing flares and intensity dips. The X-ray flares consist of flare-dip pairs. Flares are also detected in the UV range but not the dips. Aperiodic dipping behaviour is also observed during X-ray quiescence but not in the UV. The 0.2-100keV spectrum is featureless and described by a power law model with Gamma=1.7. The 100MeV-10GeV spectrum is instead represented by a power law index of 2.45. The luminosity ratio between 0.1-100GeV and 0.2--100keV is ~0.8, hence the GeV emission is a significant component of the total energy output. Furthermore, the X-ray spectrum does not greatly change during flares, quiescence and the dips seen in quiescence but it hardens during the post-flare dips. Optical photometry reveals a period of 4.32hr likely related to the binary orbit. Near-IR, possibly ellipsoidal, variations are detected. Large amplitude variability on shorter (tens mins) timescales are found to be non-periodic. The observed variability at all wavelengths and the spectral characteristics strongly favour a low-mass atypical low-luminosity X-ray binary and are against a Cataclysmic Variable nature. The association with a Fermi/LAT high energy gamma ray source further strengths this interpretation.
The neutron star low-mass X-ray binary GRS 1741.9-2853 is a known type-I burster of the Galactic Center. It is transient, faint, and located in a very crowded region, only 10 arcmin from the supermassive black hole Sgr A*. Therefore, its bursting behavior has been poorly studied so far. In particular, its persistent emission has rarely been detected between consecutive bursts, due to lack of sensitivity or confusion. This is what made GRS 1741.9-2853 one of the nine burst-only sources identified by BeppoSAX a few years ago. The physical properties of GRS 1741.9-2853 bursts are yet of great interest since we know very little about the nuclear regimes at stake in low accretion rate bursters. We examine here for the first time several bursts in relation with the persistent emission of the source, using INTEGRAL, XMM-Newton, and Swift observations. We investigate the source flux variability and bursting behavior during its 2005 and 2007 long outbursts. The persistent luminosity of GRS 1741.9-2853 varied between ~1.7 and 10.5 10^36 erg s^-1, i.e. 0.9-5.3% of the Eddington luminosity. The shape of the spectrum as described by an absorbed power-law remained with a photon index Gamma ~ 2 and a column density $N_{rm H} ~ 12 10^22 cm^-2 throughout the outbursts. We discovered 11 type-I bursts with INTEGRAL, and inspected 4 additional bursts: 2 recorded by XMM-Newton and 2 by Swift. From the brigthest burst, we derive an upper limit on the source distance of ~7 kpc. The observed bursts characteristics and source accretion rate suggest pure helium explosions igniting at column depths y_{ign} ~ 0.8-4.8 10^8 g cm^-1, for typical energy releases of ~1.2-7.4 10^39 erg.
A significant number of cataclysmic variables were detected as hard X-ray sources in the INTEGRAL survey, most of them of the magnetic intermediate polar type. We present a detailed X-ray broad-band study of two new sources, IGR J00234+6141 and 1RXS J213344.1+510725, that allow us to classify them as secure members of the intermediate polar class. Timing and spectral analysis of IGR J00234+6141 are based on a XMM-Newton observation and INTEGRAL publicly available data. For 1RXS J213344.1+510725 we use XMM-Newton and Suzaku observations at different epochs, as well as INTEGRAL publicly available data. We determine a spin period of 561.64 +/- 0.56 s for the white dwarf in IGR J00234+6141. The X-ray pulses are observed up to about 2 keV. From XMM-Newton and Suzaku observations of 1RXS J213344.1+510725, we find a rotational period of 570.862 +/- 0.034 s. The observations span three epochs where the pulsation is observed to change at different energies both in amplitude and shape. In both objects, the spectral analysis spanned over a wide energy range, from 0.3 to 100 keV, shows the presence of multiple emission components absorbed by dense material. The X-ray spectrum of IGR J00234+6141 is consistent with a multi-temperature plasma with a maximum temperature of about 50 keV. In 1RXS J213344.1+510725, multiple optically thin components are inferred, as well as an optically thick (blackbody) soft X-ray emission with a temperature of about 100 eV. This latter adds 1RXS J213344.1+510725 to the growing group of soft X-ray intermediate polars. (abridged)
XTE J1701-407 is a newly discovered X-ray transient source. In this work we investigate its flux variability and study the intermediate long and short bursts discovered by Swift on July 17, and 27, 2008, respectively. So far, only one intermediate long burst, with a duration of ~18 minutes and ten days later a short burst, have been recorded from XTE J1701-407. We analyzed the public available data from Swift and RXTE, and compared the observed properties of the intermediate long burst with theoretical ignition condition and light curves to investigate the possible nuclear burning processes. The intermediate long burst may have exhibited a photospheric radius expansion, allowing us to derive the source distance at 6.2 kpc assuming the empirically derived Eddington luminosity for pure helium. The intermediate long burst decay was best fit by using two exponential functions with e-folding times of tau_1=40(3) s and tau_2=221(9) s. The bursts occurred at a persistent luminosity of L_{per}=8.3x10E36 erg/s. For the intermediate long burst the mass accretion rate per unit area onto the NS was dot{m}=4x10E3 g/cm2/s, and the total energy released was E_{burst}=3.5x10E40 erg. This corresponds to an ignition column depth of y_{ign}=1.8x10E9 g/cm2, for a pure helium burning. We find that the energetics of this burst can be modeled in different ways, as (i) pure helium ignition, as the result of either pure helium accretion or depletion of hydrogen by steady burning during accumulation, or (ii) as ignition of a thick layer of hydrogen-rich material in a source with low metallicity. However, comparison of the burst duration with model light curves suggests that hydrogen burning plays a role during the burst, and therefore this source is a low accretion rate burster with a low metallicity in the accreted material.
X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence of exceptional burst events lasting more than ~10 minutes. Half of the so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading up to such long bursts. Depending on the composition of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Intermediate long bursts are particularly expected to occur at very low accretion rates and make possible to study the transition from a hydrogen-rich bursting regime to a pure helium regime.
57 - E. Bozzo 2008
In this paper we survey the theory of wind accretion in high mass X-ray binaries hosting a magnetic neutron star and a supergiant companion. We concentrate on the different types of interaction between the inflowing wind matter and the neutron star magnetosphere that are relevant when accretion of matter onto the neutron star surface is largely inhibited; these include the inhibition through the centrifugal and magnetic barriers. Expanding on earlier work, we calculate the expected luminosity for each regime and derive the conditions under which transition from one regime to another can take place. We show that very large luminosity swings (~10^4 or more on time scales as short as hours) can result from transitions across different regimes. The activity displayed by supergiant fast X-ray transients, a recently discovered class of high mass X-ray binaries in our galaxy, has often been interpreted in terms of direct accretion onto a neutron star immersed in an extremely clumpy stellar wind. We show here that the transitions across the magnetic and/or centrifugal barriers can explain the variability properties of these sources as a results of relatively modest variations in the stellar wind velocity and/or density. According to this interpretation we expect that supergiant fast X-ray transients which display very large luminosity swings and host a slowly spinning neutron star are characterized by magnetar-like fields, irrespective of whether the magnetic or the centrifugal barrier applies. Supergiant fast X-ray transients might thus provide a new opportunity to detect and study magnetars in binary systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا