Do you want to publish a course? Click here

We demonstrate a novel approach to obtain resonance linewidth below that limited by coherence lifetime. Cross correlation between induced intensity modulation of two lasers coupling the target resonance exhibits a narrow spectrum. 1/30 of the lifetime-limited width was achieved in a proof-of-principle experiment where two ground states are the target resonance levels. Attainable linewidth is only limited by laser shot noise in principle. Experimental results agree with an intuitive analytical model and numerical calculations qualitatively. This technique can be easily implemented and should be applicable to many atomic, molecular and solid state spin systems for spectroscopy, metrology and resonance based sensing and imaging.
Quantum repeaters based on atomic ensemble quantum memories are promising candidates for achieving scalable distribution of entanglement over long distances. Recently, important experimental progress has been made towards their implementation. However, the entanglement rates and scalability of current approaches are limited by relatively low retrieval and single-photon detector efficiencies. We propose a scheme, which makes use of fluorescent detection of stored excitations to significantly increase the efficiency of connection and hence the rate. Practical performance and possible experimental realizations of the new protocol are discussed.
We present a protocol to prepare decoherence free cluster states using ultracold atoms loaded in a two dimensional superlattice. The superlattice geometry leads to an array of 2*2 plaquettes, each of them holding four spin-1/2 particles that can be used for encoding a single logical qubit in the two-fold singlet subspace, insensitive to uniform magnetic field fluctuations in any direction. Dynamical manipulation of the supperlattice yields distinct inter and intra plaquette interactions and permits to realize one qubit and two qubit gates with high fidelity, leading to the generation of universal cluster states for measurement based quantum computation. Our proposal based on inter and intra plaquette interactions also opens the path to study polymerized Hamiltonians which support ground states describing arbitrary quantum circuits.
Effective transport of quantum information is an essential element of quantum computation. We consider the problem of transporting a quantum state by using a moving potential well, while maintaining the encoded quantum information. In particular, we look at a set of cases where the input control defining the position of the potential well is subject to different types of distortion, each of which is motivated by experimental considerations. We show that even under these conditions, we are able to perfectly transfer the quantum information non-adiabatically over any given distance.
We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection. We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of Electromagnetically Induced Transparency, to a control beam with intensity vanishing at a certain location. Practical performance of this technique and its potential applications to quantum information science with cold atoms, ions, and solid-state qubits are discussed.
We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-vacancy (NV) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.
We describe and analyze an efficient register-based hybrid quantum computation scheme. Our scheme is based on probabilistic, heralded optical connection among local five-qubit quantum registers. We assume high fidelity local unitary operations within each register, but the error probability for initialization, measurement, and entanglement generation can be very high (~5%). We demonstrate that with a reasonable time overhead our scheme can achieve deterministic non-local coupling gates between arbitrary two registers with very high fidelity, limited only by the imperfections from the local unitary operation. We estimate the clock cycle and the effective error probability for implementation of quantum registers with ion-traps or nitrogen-vacancy (NV) centers. Our new scheme capitalizes on a new efficient two-level pumping scheme that in principle can create Bell pairs with arbitrarily high fidelity. We introduce a Markov chain model to study the stochastic process of entanglement pumping and map it to a deterministic process. Finally we discuss requirements for achieving fault-tolerant operation with our register-based hybrid scheme, and also present an alternative approach to fault-tolerant preparation of GHZ states.
Strongly correlated quantum systems can exhibit exotic behavior called topological order which is characterized by non-local correlations that depend on the system topology. Such systems can exhibit remarkable phenomena such as quasi-particles with anyonic statistics and have been proposed as candidates for naturally fault-tolerant quantum computation. Despite these remarkable properties, anyons have never been observed in nature directly. Here we describe how to unambiguously detect and characterize such states in recently proposed spin lattice realizations using ultra-cold atoms or molecules trapped in an optical lattice. We propose an experimentally feasible technique to access non-local degrees of freedom by performing global operations on trapped spins mediated by an optical cavity mode. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit. Furthermore, our technique can be used to probe statistics and dynamics of anyonic excitations.
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished via noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols--quantum repeater protocols--can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing new, more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final state fidelity for preparing long distance entangled states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا