We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection. We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.
We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [Phys. Rev. Lett. 105, 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single-photon states are produced and grown into superpositions of coherent states, known as two-mode cat states. The entanglement is then distributed using homodyne detection. To improve the protocol, we replace the time-consuming non-local growth of cat states with local growth of single-mode cat states, eliminating the need for classical communication during growth. Entanglement is generated in subsequent connection processes. Furthermore the growth procedure is optimized. We review the main elements of the original protocol and present the two modifications. Finally the two protocols are compared and the modified protocol is shown to perform significantly better than the original protocol.
We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fidelity for success probability, from high fidelity pairs (F=0.98 or above) to moderate fidelity pairs. The same physical resources that create the long-distance entanglement are used to implement the local gates required for entanglement purification and swapping, creating a homogeneous repeater architecture. Optimizing the noise properties of the initially distributed pairs significantly improves the rate of generating long-distance Bell pairs. Finally, we discuss the performance trade-off between spatial and temporal resources.
Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstras algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstras algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.
We present a quantum repeater protocol using atomic ensembles, linear optics and single-photon sources. Two local polarization entangled states of atomic ensembles $u$ and $d$ are generated by absorbing a single photon emitted by an on-demand single-photon sources, based on which high-fidelity local entanglement between four ensembles can be established efficiently through Bell-state measurement. Entanglement in basic links and entanglement connection between links are carried out by the use of two-photon interference. In addition to being robust against phase fluctuations in the quantum channels, this scheme may speed up quantum communication with higher fidelity by about 2 orders of magnitude for 1280 km compared with the partial read (PR) protocol (Sangouard {it et al.}, Phys. Rev. A {bf77}, 062301 (2008)) which may generate entanglement most quickly among the previous schemes with the same ingredients.