Do you want to publish a course? Click here

Motivated by suggested question generation in conversational news recommendation systems, we propose a model for generating question-answer pairs (QA pairs) with self-contained, summary-centric questions and length-constrained, article-summarizing answers. We begin by collecting a new dataset of news articles with questions as titles and pairing them with summaries of varying length. This dataset is used to learn a QA pair generation model producing summaries as answers that balance brevity with sufficiency jointly with their corresponding questions. We then reinforce the QA pair generation process with a differentiable reward function to mitigate exposure bias, a common problem in natural language generation. Both automatic metrics and human evaluation demonstrate these QA pairs successfully capture the central gists of the articles and achieve high answer accuracy.
In recent years, deep learning-based methods have shown promising results in computer vision area. However, a common deep learning model requires a large amount of labeled data, which is labor-intensive to collect and label. Whats more, the model can be ruined due to the domain shift between training data and testing data. Text recognition is a broadly studied field in computer vision and suffers from the same problems noted above due to the diversity of fonts and complicated backgrounds. In this paper, we focus on the text recognition problem and mainly make three contributions toward these problems. First, we collect a multi-source domain adaptation dataset for text recognition, including five different domains with over five million images, which is the first multi-domain text recognition dataset to our best knowledge. Secondly, we propose a new method called Meta Self-Learning, which combines the self-learning method with the meta-learning paradigm and achieves a better recognition result under the scene of multi-domain adaptation. Thirdly, extensive experiments are conducted on the dataset to provide a benchmark and also show the effectiveness of our method. The code of our work and dataset are available soon at https://bupt-ai-cz.github.io/Meta-SelfLearning/.
The increasing demands of power supply and data rate for mobile devices promote the research of simultaneous information and power transfer (SWIPT). Optical SWIPT, as known as simultaneous light information and power transfer (SLIPT), can provide high-capacity communication and high-power charging. However, light emitting diodes (LEDs)-based SLIPT technologies have low efficiency due to energy dissipation over the air. Laser-based SLIPT technologies face the challenge in mobility, as it needs accurate positioning, fast beam steering, and real-time tracking. In this paper, we propose a mobile SLIPT scheme based on spatially separated laser resonator (SSLR) and intra-cavity second harmonic generation (SHG). The power and data are transferred via separated frequencies, while they share the same self-aligned resonant beam path, without the needs of receiver positioning and beam steering. We establish the analysis model of the resonant beam power and its second harmonic power. We also evaluate the system performance on deliverable power and channel capacity. Numerical results show that the proposed system can achieve watt-level battery charging power and above 20-bit/s/Hz communication capacity over 8-m distance, which satisfies the requirements of most indoor mobile devices.
The belief function in Dempster Shafer evidence theory can express more information than the traditional Bayesian distribution. It is widely used in approximate reasoning, decision-making and information fusion. However, its power exponential explosion characteristics leads to the extremely high computational complexity when handling large amounts of elements in classic computers. In order to solve the problem, we encode the basic belief assignment (BBA) into quantum states, which makes each qubit correspond to control an element. Besides the high efficiency, this quantum expression is very conducive to measure the similarity between two BBAs, and the measuring quantum algorithm we come up with has exponential acceleration theoretically compared to the corresponding classical algorithm. In addition, we simulate our quantum version of BBA on Qiskit platform, which ensures the rationality of our algorithm experimentally. We believe our results will shed some light on utilizing the characteristic of quantum computation to handle belief function more conveniently.
145 - Xiang Tan , Li Zhou , Haijun Wang 2021
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this paper, we investigate the distributed DSA problem for multi-user in a typical multi-channel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we proposed a centralized off-line training and distributed on-line execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of cognitive radio network in distributed fashion without coordination information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. From the simulation results, we can observe that the proposed algorithm can converge fast and achieve almost the optimal performance.
141 - Xueke Pu , Wenli Zhou 2021
The primitive equations of large-scale ocean dynamics form the fundamental model in geophysical flows. It is well-known that the primitive equations can be formally derived by hydrostatic balance. On the other hand, the mathematically rigorous derivation of the primitive equations without coupling with the temperature is also known. In this paper, we generalize the above result from the mathematical point of view. More precisely, we prove that the scaled Boussinesq equations strongly converge to the primitive equations with full viscosity and full diffusion as the aspect ration parameter goes to zero, and the rate of convergence is of the same order as the aspect ratio parameter. The convergence result mathematically implies the high accuracy of hydrostatic balance.
Humans are highly efficient learners, with the ability to grasp the meaning of a new concept from just a few examples. Unlike popular computer vision systems, humans can flexibly leverage the compositional structure of the visual world, understanding new concepts as combinations of existing concepts. In the current paper, we study how people learn different types of visual compositions, using abstract visual forms with rich relational structure. We find that people can make meaningful compositional generalizations from just a few examples in a variety of scenarios, and we develop a Bayesian program induction model that provides a close fit to the behavioral data. Unlike past work examining special cases of compositionality, our work shows how a single computational approach can account for many distinct types of compositional generalization.
This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.
We propose a model of the substructural logic of Bunched Implications (BI) that is suitable for reasoning about quantum states. In our model, the separating conjunction of BI describes separable quantum states. We develop a program logic where pre- and post-conditions are BI formulas describing quantum states -- the program logic can be seen as a counterpart of separation logic for imperative quantum programs. We exercise the logic for proving the security of quantum one-time pad and secret sharing, and we show how the program logic can be used to discover a flaw in Google Cirqs tutorial on the Variational Quantum Algorithm (VQA).
359 - Qianli Zhou , Yong Deng 2020
For a certain moment, the information volume represented in a probability space can be accurately measured by Shannon entropy. But in real life, the results of things usually change over time, and the prediction of the information volume contained in the future is still an open question. Deng entropy proposed by Deng in recent years is widely applied on measuring the uncertainty, but its physical explanation is controversial. In this paper, we give Deng entropy a new explanation based on the fractal idea, and proposed its generalization called time fractal-based (TFB) entropy. The TFB entropy is recognized as predicting the uncertainty over a period of time by splitting times, and its maximum value, called higher order information volume of mass function (HOIVMF), can express more uncertain information than all of existing methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا