Do you want to publish a course? Click here

[Abridged] With VLT/X-shooter, we obtain optical and NIR spectra of six Ly-alpha blobs at z~2.3. Using three measures --- the velocity offset between the Lya line and the non-resonant [OIII] or H-alpha line (Dv_Lya), the offset of stacked interstellar metal absorption lines, and the spectrally-resolved [OIII] line profile --- we study the kinematics of gas along the line of sight to galaxies within each blob center. These three indicators generally agree in velocity and direction, and are consistent with a simple picture in which the gas is stationary or slowly outflowing at a few hundred km/s from the embedded galaxies. The absence of stronger outflows is not a projection effect: the covering fraction for our sample is limited to <1/8 (13%). The outflow velocities exclude models in which star formation or AGN produce super or hyper winds of up to ~1000km/s. The Dv_Lya offsets here are smaller than typical of LBGs, but similar to those of compact LAEs. The latter suggests that outflow speed cannot be a dominant factor in driving extended Lya emission. For one Lya blob (CDFS-LAB14), whose Lya profile and metal absorption line offsets suggest no significant bulk motion, we use a simple radiative transfer model to make the first column density measurement of gas in an embedded galaxy, finding it consistent with a DLA system. Overall, the absence of clear inflow signatures suggests that the channeling of gravitational cooling radiation into Lya is not significant over the radii probed here. However, one peculiar system (CDFS-LAB10) has a blueshifted Lya component that is not obviously associated with any galaxy, suggesting either displaced gas arising from tidal interactions among blob galaxies or gas flowing into the blob center. The former is expected in these overdense regions, and the latter might signify the predicted but elusive cold gas accretion along filaments.
160 - Rene Andrae , Knud Jahnke 2011
Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understand the formation of this type of galaxies. The tidal-torque theory tries to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness on distances of 1Mpc/h. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering such correlations but did not account for errors in redshift, ellipticity and morphological classifications. We explain how to rigorously propagate all important errors. Analysing disc galaxies in the SDSS database, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distances of 1Mpc/h are plausible but not statistically significant. This result agrees with a simple hypothesis test in the Local Group, where we find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e., PanSTARRS and LSST cannot be used. We also discuss potentials and problems of front-edge classifications of galaxy discs in order to improve estimates of angular-momentum orientation.
126 - Yujin Yang 2011
Exploring the origin of Ly-alpha nebulae (blobs) requires measurements of their gas kinematics that are impossible with only the resonant, optically-thick LyA line. To define gas motions relative to the systemic velocity of the blob, the LyA line must be compared with an optically-thin line like Halpha, which is not much altered by radiative transfer effects. We obtain optical and NIR spectra of the two brightest LyA blobs from Yang et al. sample using the Magellan/MagE and VLT/SINFONI. Both the LyA and Halpha lines confirm that these blobs lie at the survey redshift, z~2.3. Within each blob, we detect several Halpha sources, which roughly correspond to galaxies seen in HST images. The Halpha detections show that these galaxies have large internal velocity dispersions (130 - 190km/s) and that, in the one system (LAB01), their velocity difference is ~440 km/s. The presence of multiple galaxies within the blobs, and those galaxies large velocity dispersions and large relative motion, is consistent with our previous finding that LyA blobs inhabit massive dark matter halos that will evolve into those typical of rich clusters today. To determine whether the gas near the embedded galaxies is predominantly infalling or outflowing, we compare the LyA and Halpha line centers, finding that LyA is not offset (Delta LyA = +0km/s) in LAB01 and redshifted by only +230 km/s in LAB02. These offsets are small compared to those of Lyman break galaxies, which average +450 km/s and extend to about +700 km/s. We test and rule out the simplest infall models and those outflow models with super/hyper-winds, which require large outflow velocities. Because of the unknown geometry of the gas distribution and the possibility of multiple sources of LyA emission embedded in the blobs, a larger sample and more sophisticated models are required to test more complex or a wider range of infall and outflow scenarios.
Recent studies of the tight scaling relations between the masses of supermassive black holes and their host galaxies have suggested that in the past black holes constituted a larger fraction of their host galaxies mass. However, these arguments are limited by selection effects and difficulties in determining robust host galaxy masses at high redshifts. Here we report the first results of a new, complementary diagnostic route: we directly determine a dynamical host galaxy mass for the z=1.3 luminous quasar J090543.56+043347.3 through high-spatial-resolution (0.47, 4kpc FWHM) observations of the host galaxy gas kinematics over 30x40 kpc using ESO/VLT/SINFONI with LGS/AO. Combining our result of M_dyn = 2.05+1.68_0.74 x 10^11 M_sun (within a radius 5.25 +- 1.05 kpc) with M_BH,MgII = 9.02 pm 1.43 x 10^8 M_sun, M_BH,Halpha = 2.83 +1.93-1.13 x 10^8 M_sun, we find that the ratio of black hole mass to host galaxy dynamical mass for J090543.56+043347.3 matches the present-day relation for M_BH vs. M_Bulge,Dyn, well within the IR scatter, deviating at most a factor of two from the mean. J090543.56+043347.3 displays clear signs of an ongoing tidal interaction and of spatially extended star formation at a rate of 50-100 M_sun/yr, above the cosmic average for a galaxy of this mass and redshift. We argue that its subsequent evolution may move J090543.56+043347.3 even closer to the z=0 relation for M_BH vs. M_Bulge,Dyn. Our results support the picture where any substantive evolution in these relations must occur prior to z~1.3. Having demonstrated the power of this modelling approach we are currently analyzing similar data on seven further objects to better constrain such evolution.
What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGN) activity? To answer this longstanding question, we analyze 140 XMM-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z~0.3-1.0 and log(M_*/M_sun)<11.7 with high-resolution HST/ACS imaging from the COSMOS field. The visual analysis of their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies in the AGN and control samples, i.e. quantifying the signature of recent mergers which might potentially be responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies do not show strong distortions, and (2) there is no significant difference in the distortion fractions between active and inactive galaxies. Our findings provide the best direct evidence that, since z~1, the bulk of black hole accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e., secular processes and minor interactions, are the leading triggers for the episodes of major black hole growth. We also exclude an alternative interpretation of our results: a significant time lag between merging and the observability of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to: (1) recent major mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGN, (2) the lack of a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low levels of soft X-ray obscuration for AGN hosted by interacting galaxies, in contrast to model predictions.
We show that the black hole-bulge mass scaling relations observed from the local to the high-z Universe can be largely or even entirely explained by a non-causal origin, i.e. they do not imply the need for any physically coupled growth of black hole and bulge mass, for example through feedback by active galactic nuclei (AGN). Provided some physics for the absolute normalisation, the creation of the scaling relations can be fully explained by the hierarchical assembly of black hole and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early Universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) black hole and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and black hole accretion recipes that (i) work without any coupling of the two properties per individual galaxy and (ii) correctly reproduce the observed star formation and black hole accretion rate density in the Universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ~1.1 for the M_BH-M_bulge-relations at z=0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.
We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 AGN in the COSMOS survey at 1<z<2. For 10 AGN at mean redshift z~1.4 with both HST/ACS and HST/NICMOS imaging data we are able to compute total stellar mass M_(*,total), based on restframe UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial BH mass-estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find zero difference between the M_BH--M_(*,total)-relation at z~1.4 and the M_BH--M_(*,bulge)-relation in the local Universe. Our interpretation is: (a) If our objects were purely bulge-dominated, the M_BH--M_(*,bulge)-relation has not evolved since z~1.4. However, (b) since we have evidence for substantial disk components, the bulges of massive galaxies (logM_(*,total)=11.1+-0.25 or logM_BH~8.3+-0.2) must have grown over the last 9 Gyrs predominantly by redistribution of disk- into bulge-mass. Since all necessary stellar mass exists in the galaxy at z=1.4, no star-formation or addition of external stellar material is required, only a redistribution e.g. induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M_BH/M_(*,bulge) ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge-formation in massive galaxies is independent of any strong BH-feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.
We describe the creation of a set of artificially redshifted galaxies in the range 0.1<z<1.1 using a set of ~100 SDSS low redshift (v<7000 km/s) images as input. The intention is to generate a training set of realistic images of galaxies of diverse morphologies and a large range of redshifts for the GEMS and COSMOS galaxy evolution projects. This training set allows other studies to investigate and quantify the effects of cosmological redshift on the determination of galaxy morphologies, distortions and other galaxy properties that are potentially sensitive to resolution, surface brightness and bandpass issues. We use galaxy images from the SDSS in the u, g, r, i, z filter bands as input, and computed new galaxy images from these data, resembling the same galaxies as located at redshifts 0.1<z<1.1 and viewed with the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). In this process we take into account angular size change, cosmological surface brightness dimming, and spectral change. The latter is achieved by interpolating a spectral energy distribution that is fit to the input images on a pixel-to-pixel basis. The output images are created for the specific HST ACS point spread function and the filters used for GEMS (F606W and F850LP) and COSMOS (F814W). All images are binned onto the desired pixel grids (0.03 for GEMS and 0.05 for COSMOS) and corrected to an appropriate point spread function. Noise is added corresponding to the data quality of the two projects and the images are added onto empty sky pieces of real data images. We make these datasets available from our website, as well as the code - FERENGI: Full and Efficient Redshifting of Ensembles of Nearby Galaxy Images - to produce datasets for other redshifts and/or instruments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا