Do you want to publish a course? Click here

We show that carbon-doped hexagonal boron nitride (h-BN) has extraordinary properties with many possible applications. We demonstrate that the substitution-induced impurity states, associated with carbon atoms, and their interactions dictate the electronic structure and properties of C-doped h-BN. Furthermore, we show that stacking of localized impurity states in small C clusters embedded in h-BN forms a set of discrete energy levels in the wide gap of h-BN. The electronic structures of these C clusters have a plethora of applications in optics, magneto-optics, and opto-electronics.
Quantum Monte Carlo approaches such as the diffusion Monte Carlo (DMC) method are among the most accurate many-body methods for extended systems. Their scaling makes them well suited for defect calculations in solids. We review the various approximations needed for DMC calculations of solids and the results of previous DMC calculations for point defects in solids. Finally, we present estimates of how approximations affect the accuracy of calculations for self-interstitial formation energies in silicon and predict DMC values of 4.4(1), 5.1(1) and 4.7(1) eV for the X, T and H interstitial defects, respectively, in a 16(+1)-atom supercell.
We report the compositional dependence of the electronic band structure for a range of III-V alloys. Density functional theory with the PBE functional is insufficient to mimic the electronic gap energies at different symmetry points of the Brillouin zone. The HSE hybrid functional with screened exchange accurately reproduces the experimental band gaps and, more importantly, the alloy concentration of the direct-indirect gap crossovers for the III-V alloys studied here: AlGaAs, InAlAs, AlInP, InGaP, and GaAsP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا