Do you want to publish a course? Click here

Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride

242   0   0.0 ( 0 )
 Added by Hyoungki Park
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that carbon-doped hexagonal boron nitride (h-BN) has extraordinary properties with many possible applications. We demonstrate that the substitution-induced impurity states, associated with carbon atoms, and their interactions dictate the electronic structure and properties of C-doped h-BN. Furthermore, we show that stacking of localized impurity states in small C clusters embedded in h-BN forms a set of discrete energy levels in the wide gap of h-BN. The electronic structures of these C clusters have a plethora of applications in optics, magneto-optics, and opto-electronics.



rate research

Read More

Few-layer flakes of hexagonal boron nitride were prepared by ultrasonication of bulk crystals and agglomerated to form thin films. The transmission and reflection spectra of the thin films were measured. The spectral dependences of the linear and circular polarization revealed a hidden anisotropy of the films over the whole sample area which could not be explained by the anisotropy of the chaotically-oriented individual particles. Statistical analysis of optical microscopy images showed a macroscopic particle density distribution with ordering corresponding to the optical axis observed in the polarization data.
We investigate the effect of surface acoustic waves on the atomic-like optical emission from defect centers in hexagonal boron nitride layers deposited on the surface of a LiNbO$_3$ substrate. The dynamic strain field of the surface acoustic waves modulates the emission lines resulting in intensity variations as large as 50% and oscillations of the emission energy with an amplitude of almost 1 meV. From a systematic study of the dependence of the modulation on the acoustic wave power, we determine a hydrostatic deformation potential for defect centers in this two-dimensional material of about 40 meV/%. Furthermore, we show that the dynamic piezoelectric field of the acoustic wave could contribute to the stabilization of the optical properties of these centers. Our results show that surface acoustic waves are a powerful tool to modulate and control the electronic states of two-dimensional materials.
Optically addressable spins in materials are important platforms for quantum technologies, such as repeaters and sensors. Identification of such systems in two-dimensional (2d) layered materials offers advantages over their bulk counterparts, as their reduced dimensionality enables more feasible on-chip integration into devices. Here, we report optically detected magnetic resonance (ODMR) from previously identified carbon-related defects in 2d hexagonal boron nitride (hBN). We show that single-defect ODMR contrast can be as strong as 6% and displays a magnetic-field dependence with both positive or negative sign per defect. This bipolarity can shed light into low contrast reported recently for ensemble ODMR measurements for these defects. Further, the ODMR lineshape comprises a doublet resonance, suggesting either low zero-field splitting or hyperfine coupling. Our results offer a promising route towards realising a room-temperature spin-photon quantum interface in hexagonal boron nitride.
Color centers in 2-dimensional hexagonal boron nitride (h-BN) have recently emerged as stable and bright single-photon emitters (SPEs) operating at room temperature. In this study, we combine theory and experiment to show that vacancy-based SPEs selectively form at nano-scale wrinkles in h-BN with its optical dipole preferentially aligned to the wrinkle direction. By using density functional theory calculations, we find that the wrinkle curvature plays a crucial role in localizing vacancy-based SPE candidates and aligning the defects symmetry plane to the wrinkle direction. By performing optical measurements on SPEs created in h-BN single-crystal flakes, we experimentally confirm the wrinkle-induced generation of SPEs and their polarization alignment to the wrinkle direction. Our results not only provide a new route to controlling the atomic position and the optical property of the SPEs but also revealed the possible crystallographic origin of the SPEs in h-BN, greatly enhancing their potential for use in solid-state quantum photonics and quantum information processing.
We study the carbon dimer defect in a hexagonal boron-nitride monolayer using the GW and Bethe-Salpeter many-body perturbation theories within a finite size cluster approach. While quasiparticle energies converge very slowly with system size due to missing long-range polarization effects, optical excitations converge much faster, with a $1/R^3$ scaling law with respect to cluster average radius. We obtain a luminescence zero-phonon energy of 4.36 eV, including significant 0.13 eV zero-point vibrational energy and 0.15 eV reorganization energy contributions. Inter-layer screening decreases further the emission energy by about 0.3 eV. These results bring support to the recent identification of the substitutional carbon dimer as the likely source of the zero-phonon 4.1 eV luminescence line. Finally, the GW quasiparticle energies are extrapolated to the infinite h-BN monolayer limit, leading to a predicted defect HOMO-LUMO photoemission gap of 7.6 eV. Comparison with the optical gap yields a very large excitonic binding energy of 3 eV for the associated localized Frenkel exciton.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا