Do you want to publish a course? Click here

109 - John Gough 2014
We introduce the concepts of Poisson brackets for classical noise, and of canonically conjugate Wiener processes (symplectic noise). Phase space diffusions driven by these processes are considered and the general form of a stochastic process preserving the full (system and noise) Poisson structure is obtained. We show that, once the classical stochastic model is required to preserve the joint system and noise Poisson bracket, it has much in common with quantum markovian models.
Using the Trotter-Kato theorem we prove the convergence of the unitary dynamics generated by an increasingly singular Hamiltonian in the case of a single field coupling. The limit dynamics is a quantum stochastic evolution of Hudson-Parthasarathy type, and we establish in the process a graph limit convergence of the pre-limit Hamiltonian operators to the Chebotarev-Gregoratti-von Waldenfels Hamiltonian generating the quantum Ito evolution.
113 - Clive Emary , John Gough 2014
We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As concrete example we consider the use of feedback to optimise the conductance of a chaotic quantum dot and investigate effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.
We derive the filtering equation for Markovian systems undergoing homodyne measurement in the situation where the output processes being monitored are squeezed. The filtering theory applies to case where the system is driven by Fock noise (that, quantum input processes in a coherent state) and where the output is mixed with a squeezed signal. It also applies to the case of a system driven by squeezed noise, but here there is a physical restriction to emission/absorption coupling only. For the special case of a cavity mode where the dynamics is linear, we are able to derive explicitly the filtered estimate $pi_t (a)$ for the mode annihilator $a$ based on the homodyne quadrature observations up to time $t$.
The purpose of this paper is to extend J.C. Willems theory of dissipative systems to the quantum domain. This general theory, which combines perspectives from the quantum physics and control engineering communities, provides useful methods for analysis and design of dissipative quantum systems. We describe the interaction of the plant and a class of exosystems in general quantum feedback network terms. Our results include an infinitesimal characterization of the dissipation property, which generalizes the well-known Positive Real and Bounded Real Lemmas, and is used to study some properties of quantum dissipative systems. We also show how to formulate control design problems using quantum network models, which implements Willems `control by interconnection for open quantum systems. This control design formulation includes, for example, standard problems of stabilization, regulation, and robust control.
199 - John Gough 2008
We derive the Hamiltonian associated to a quantum stochastic flow by extending the Albeverio-Kurasov construction of self-adjoint extensions to finite rank perturbations of nonsemibounded operators to Fock space.
323 - John Gough 2007
We introduce a concept of a quantum wide sense stationary process taking values in a C*-algebra and expected in a sub-algebra. The power spectrum of such a process is defined, in analogy to classical theory, as a positive measure on frequency space taking values in the expected algebra. The notion of linear quantum filters is introduced as some simple examples mentioned.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا