Do you want to publish a course? Click here

We show that the surface of an $s$-wave superconductor decorated with a two-dimensional lattice of magnetic impurities can exhibit chiral topological superconductivity. If impurities order ferromagnetically and the superconducting surface supports a sufficiently strong Rashba-type spin-orbit coupling, Shiba sub-gap states at impurity locations can hybridize into Bogoliubov bands with non-vanishing, sometimes large, Chern number $C$. This topological superconductor supports $C$ chiral Majorana edge modes. We construct phase diagrams for model two-dimensional superconductors, accessing the dilute and dense magnetic impurity limits analytically and the intermediate regime numerically. To address potential experimental systems, we identify stable configurations of ferromagnetic iron atoms on the Pb (111) surface and conclude that ferromagnetic adatoms on Pb surfaces can provide a versatile platform for two-dimensional topological superconductivity.
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of systems by using a Slater-Koster tight-binding model. We predict that topological superconductivity is nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. The proximity induced superconducting gap is $sim Delta E_{so} / J$ where $Delta$ is the $s$-wave pair-potential on the chain, $E_{so}$ is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and $J$ is the exchange-splitting of the ferromagnetic chain $d$-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the $p$-wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong $s-$wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple Majorana modes at the end of a single chain.
131 - Lihua Pan , Jian Li , Yuan-Yen Tai 2014
Based on a minimal two-orbital model [Tai {it et al.}, Europhys. Lett. textbf{103}, 67001 (2013)], which captures the canonical electron-hole-doping phase diagram of the iron-pnictide BaFe$_{2}$As$_{2}$, we study the evolution of quasiparticle states as a function of doping using the Bogoliubov-de Gennes equations with and without a single impurity. Analyzing the density of states of uniformly doped samples, we are able to identify the origin of the two superconducting gaps observed in optimally hole- or electron-doped systems. The local density of states (LDOS) is then examined near a single impurity in samples without antiferromagnetic order. The qualitative features of our results near the single impurity are consistent with a work based on a five-orbital model[K. Toshikaze {it et al.}, J. Phys. Soc. Jpn. textbf{79}, 083704 (2010)]. This further supports the validity of our two-orbital model in dealing with LDOS in the single-impurity problem. Finally, we investigate the evolution of the LDOS with doping near a single impurity in the unitary or strong scattering limit, such as Zn replacing Fe. The positions of the ingap resonance peaks exhibited in our LDOS may indirectly reflect the evolution of the Fermi surface topology according to the phase diagram. Our prediction of ingap states and the evolution of the LDOS near a strong scattering single impurity can be validated by experiments probing the local quasiparticle spectrum.
We present INTEGRAL spectral analysis in the orbital/superorbital phase space of LS I +61 303. A hard X-ray spectrum with no cutoff is observed at all orbital/superorbital phases. The hard X-ray index is found to be uncorrelated with the radio index (non-simultaneously) measured at the same orbital and superorbital phases. In particular, the absence of an X-ray spectrum softening during the periods of negative radio index does not favor a simple interpretation of the radio index variations in terms of changes of state in a microquasar. We uncover hints for the superorbital variability in the hard X-ray flux, in phase with the superorbital modulation in soft X-rays. An orbital phase drift of radio peak flux and index along the superorbital period is observed in the radio data. We explore its influence on a previously reported double peak structure of radio orbital lightcurve, posing it as a plausible explanation.
213 - Lihua Pan , Jian Li , Yuan-Yen Tai 2013
Based on the minimum two-orbital model and the phase diagram recently proposed by Tai et al. (Europhys. Lett. textbf{103}, 67001(2013)) for both electron- and hole-doped 122 iron-based superconducting compounds, we use the Bogoliubov-de Gennes equations to perform a comprehensive investigation of the evolution of the Fermi surface (FS) topology in the presence of the collinear spin-density-wave (SDW) order as the doping is changed. In the parent compound, the ground state is the SDW order, where the FS is not completely gapped, and two types of Dirac cones, one electron-doped and the other hole-doped emerge in the magnetic Brillouin zone. Our findings are qualitatively consistent with recent angle-resolved photoemission spectroscopy and magneto-resistivity measurements. We also examine the FS evolution of both electron- and hole-doped cases and compare them with measurements, as well as with those obtained by other model Hamiltonians.
183 - Dirson Jian Li 2012
Despite numerous mass extinctions in the Phanerozoic eon, the overall trend in biodiversity evolution was not blocked and the life has never been wiped out. Almost all possible catastrophic events (large igneous province, asteroid impact, climate change, regression and transgression, anoxia, acidification, sudden release of methane clathrate, multi-cause etc.) have been proposed to explain the mass extinctions. However, we should, above all, clarify at what timescale and at what possible levels should we explain the mass extinction? Even though the mass extinctions occurred at short-timescale and at the species level, we reveal that their cause should be explained in a broader context at tectonic timescale and at both the molecular level and the species level. The main result in this paper is that the Phanerozoic biodiversity evolution has been explained by reconstructing the Sepkoski curve based on climatic, eustatic and genomic data. Consequently, we point out that the P-Tr extinction was caused by the tectonically originated climate instability. We also clarify that the overall trend of biodiversification originated from the underlying genome size evolution, and that the fluctuation of biodiversity originated from the interactions among the earths spheres. The evolution at molecular level had played a significant role for the survival of life from environmental disasters.
The stickiness effect suffered by chaotic orbits diffusing in the phase space of a dynamical system is studied in this paper. Previous works have shown that the hyperbolic structures in the phase space play an essential role in causing the stickiness effect. We present in this paper the relationship between the stickiness effect and the geometric property of hyperbolic structures. Using a two-dimensional area-preserving twist mapping as the model, we develop the numerical algorithms for computing the positions of the hyperbolic periodic orbits and for calculating the angle between the stable and unstable manifolds of the hyperbolic periodic orbit. We show how the stickiness effect and the orbital diffusion speed are related to the angle.
We present timing, spectral, and long-term temporal analysis of the high mass X-ray binary (HMXB) 4U 1036-56 using INTEGRAL and Swift observations. We show that it is a weak hard X-ray source spending a major fraction of the time in quiescence, and only occasionally characterized by X-ray outbursts. The outburst activity we report here lasts several days, with a dynamic range spanned by the luminosity in quiescence and in outburst as high as ~30. We report the detection of pulse period at 854.75+/-4.39 s during an outburst, which is consistent with previous measurements. Finally, we analyze the possibility of 4U 1036--56s association with the unidentified transient gamma-ray sources AGL J1037--5708 & GRO J1036--55, as prompted by its positional correlation.
We have measured the excited state lifetimes in Josephson junction phase and transmon qubits, all of which were fabricated with the same scalable multi-layer process. We have compared the lifetimes of phase qubits before and after removal of the isolating dielectric, SiNx, and find a four-fold improvement of the relaxation time after the removal. Together with the results from the transmon qubit and measurements on coplanar waveguide resonators, these measurements indicate that the lifetimes are limited by losses from the dielectric constituents of the qubits. We have extracted the individual loss contributions from the dielectrics in the tunnel junction barrier, AlOx, the isolating dielectric, SiNx, and the substrate, Si/SiO2, by weighing the total loss with the parts of electric field over the different dielectric materials. Our results agree well and complement the findings from other studies, demonstrating that superconducting qubits can be used as a reliable tool for high-frequency characterization of dielectric materials. We conclude with a discussion of how changes in design and material choice could improve qubit lifetimes up to a factor of four.
Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا