Do you want to publish a course? Click here

The ground state properties of spin-polarized deuterium (D$downarrow$) at zero temperature are obtained by means of the diffusion Monte Carlo calculations within the fixed-node approximation. Three D$downarrow$ species have been investigated (D$downarrow_1$, D$downarrow_2$, D$downarrow_3$), corresponding respectively to one, two and three equally occupied nuclear spin states. Influence of the backflow correlations on the ground state energy of the systems is explored. The equilibrium densities for D$downarrow_2$ and D$downarrow_3$ liquids are obtained and compared with ones obtained in previous approximate prediction. The density and the pressure at which the gas-liquid phase transition occurs at $T$=0 is obtained for D$downarrow_1$.
In a recent study we have reported a new type of trial wave function symmetric under the exchange of particles and which is able to describe a supersolid phase. In this work, we use the diffusion Monte Carlo method and this model wave function to study the properties of solid 4He in two- and quasi two-dimensional geometries. In the purely two-dimensional case, we obtain results for the total ground-state energy and freezing and melting densities which are in good agreement with previous exact Monte Carlo calculations performed with a slightly different interatomic potential model. We calculate the value of the zero-temperature superfluid fraction rho_{s} / rho of 2D solid 4He and find that it is negligible in all the considered cases, similarly to what is obtained in the perfect (free of defects) three-dimensional crystal using the same computational approach. Interestingly, by allowing the atoms to move locally in the perpendicular direction to the plane where they are confined to zero-point oscillations (quasi two-dimensional crystal) we observe the emergence of a finite superfluid density that coexists with the periodicity of the system.
The feasibility of path integral Monte Carlo ground state calculations with very few beads using a high-order short-time Greens function expansion is discussed. An explicit expression of the evolution operator which provides dramatic enhancements in the quality of ground-state wave-functions is examined. The efficiency of the method makes possible to remove the trial wave function and thus obtain completely model-independent results still with a very small number of beads. If a single iteration of the method is used to improve a given model wave function, the result is invariably a shadow-type wave function, whose precise content is provided by the high-order algorithm employed.
The equation of state of a weakly interacting two-dimensional Bose gas is studied at zero temperature by means of quantum Monte Carlo methods. Going down to as low densities as na^2 ~ 10^{-100} permits us for the first time to obtain agreement on beyond mean-field level between predictions of perturbative methods and direct many-body numerical simulation, thus providing an answer to the fundamental question of the equation of state of a two-dimensional dilute Bose gas in the universal regime (i.e. entirely described by the gas parameter na^2). We also show that the measure of the frequency of a breathing collective oscillation in a trap at very low densities can be used to test the universal equation of state of a two-dimensional Bose gas.
111 - K. Sakkos , J. Casulleras , 2009
High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrarily to the Takahashi-Imada action, which is accurate to fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth and sixth order error coefficients are finely tunable. By optimizing two free parameters entering in the new action we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced, and the efficiency improvement with respect to the primitive approximation is approximately a factor of ten. The Chin action is tested in a one-dimensional harmonic oscillator, a H$_2$ drop, and bulk liquid $^4$He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid $^4$He.
The ground state of solid $^4$He is studied using the diffusion Monte Carlo method and a new trial wave function able to describe the supersolid. The new wave function is symmetric under the exchange of particles and reproduces the experimental equation of state. Results for the one-body density matrix show the existence of off-diagonal long-range order with a very small condensate fraction $sim 10^{-4}$. The superfluid density of the commensurate system is below our resolution threshold, $rho_s/rho < 10^{-5}$. With a 1% concentration of vacancies the superfluid density is manifestly larger, $rho_s/rho=3.2(1) cdot 10^{-3}$.
Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed close to the tube wall and a high density arrangement characterized by two helium concentric layers. The energy correction due to the presence of neighboring tubes in a bundle has also been calculated, finding it negligible in the density range considered.
The ground-state phase properties of a two-dimensional Bose system with dipole-dipole interactions is studied by means of quantum Monte Carlo techniques. Limitations of mean-field theory in a two-dimensional geometry are discussed. A quantum phase transition from gas to solid is found. Crystal is tested for existence of a supersolid in the vicinity of the phase transition. Existence of mesoscopic analogue of the off-diagonal long-range order is shown in the one-body density matrix in a finite-size crystal. Non-zero superfluid fraction is found in a finite-size crystal, the signal being dramatically increased in presence of vacancies.
We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a $^4$He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300 showing a monotonous increase with $N$. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of $N$. The core radius is $sim 1$ AA in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K$sigma^{-3}$ ($sigma=2.556$ AA) for $N ge 200$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا