Do you want to publish a course? Click here

265 - D. Geffroy , A. Hariki , J. Kunes 2018
We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lay perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k-odd spin textures, we discuss the Bloch theorem which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.
Materials with correlated electrons often respond very strongly to external or internal influences, leading to instabilities and states of matter with broken symmetry. This behavior can be studied theoretically either by evaluating the linear response characteristics, or by simulating the ordered phases of the materials under investigation. We developed the necessary tools within the dynamical mean-field theory (DMFT) to search for electronic instabilities in materials close to spin-state crossovers and to analyze the properties of the corresponding ordered states. This investigation, motivated by the physics of LaCoO$_3$, led to a discovery of condensation of spinful excitons in the two-orbital Hubbard model with a surprisingly rich phase diagram. The results are reviewed in the first part of the article. Electronic correlations can also be the driving force behind structural transformations of materials. To be able to investigate correlation-induced phase instabilities we developed and implemented a formalism for the computation of total energies and forces within a fully charge self-consistent combination of density functional theory and DMFT. Applications of this scheme to the study of structural instabilities of selected correlated electron materials such as Fe and FeSe are reviewed in the second part of the paper.
We use the LDA+U method to study the possibility of exciton condensation in perovskites of transition metals with $d^6$ electronic configuration such as LaCoO$_3$. For realistic interaction parameters we find several distinct solutions exhibiting spin-triplet exciton condensate, which gives rise to a local spin density distribution while the ordered moments are vanishingly small. Rhombohedral distortion from the ideal cubic structure suppresses the ordered state, contrary to the spin-orbit coupling which enhances the excitonic condensation energy. We explain the trends observed in the numerical simulations with the help of a simplified strong-coupling model. Our results indicate that LaCoO$_3$ is close to the excitonic instability and suggest ways to make it order.
86 - J. Kunes , D. Geffroy 2016
Spin textures in k-space arising from spin-orbit coupling in non-centrosymmetric crystals find numerous applications in spintronics. We present a mechanism that leads to appearance of k-space spin texture due to spontaneous symmetry breaking driven by electronic correlations. Using dynamical mean-field theory we show that doping a spin-triplet excitonic insulator provides a means of creating new thermodynamic phases with unique properties. The numerical results are interpreted using analytic calculations within a generalized double-exchange framework.
409 - J. Kunes , P. Augustinsky 2013
Using linear response theory with the dynamical mean-field approximation we investigate the particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition. Besides the previously reported high-spin--low-spin order we find an instability towards triplet excitonic condensate. We discuss the strong and weak coupling limits of the model, in particular, a connection to the spinful hard-core bosons with a nearest-neighbor interaction. Possible realization in LaCoO3 at intermediate temperatures is briefly discussed.
106 - M. Brasse , L. Chioncel , J. Kunes 2013
We report the angular dependence of three distinct de Haas-van Alphen (dHvA) frequencies of the torque magnetization in the itinerant antiferromagnet CrB2 at temperatures down to 0.3K and magnetic fields up to 14T. Comparison with the calculated Fermi surface of nonmagnetic CrB2 suggests that two of the observed dHvA oscillations arise from electron-like Fermi surface sheets formed by bands with strong B-px,y character which should be rather insensitive to exchange splitting. The measured effective masses of these Fermi surface sheets display strong enhancements of up to a factor of two over the calculated band masses which we attribute to electron-phonon coupling and electronic correlations. For the temperature and field range studied, we do not observe signatures reminiscent of the heavy d-electron bands expected for antiferromagnetic CrB2. In view that the B-p bands are at the heart of conventional high-temperature superconductivity in the isostructural MgB2, we consider possible implications of our findings for nonmagnetic CrB2 and an interplay of itinerant antiferromagnetism with superconductivity.
119 - J. Kunes , I. Leonov , M. Kollar 2010
We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.
The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.
70 - J. Kunes , V. I. Anisimov 2008
Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model of covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.
The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation + Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O $2p$ orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rocksalt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPa range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin (5/2 to 1/2), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا