Do you want to publish a course? Click here

We present a screened exact-exchange (SXX) method for the efficient and accurate calculation of the optical properties of solids, where the screening is achieved through the zero-wavevector limit of the inverse dielectric function. The SXX approach can be viewed as a simplification of the Bethe-Salpeter equation (BSE) or, in the context of time-dependent density-functional theory, as a first step towards a new class of hybrid functionals for the optical properties of solids. SXX performs well for bound excitons and continuum spectra in both small-gap semiconductors and large-gap insulators, with a computational cost much lower than that of the BSE.
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single determinant and symmetry eigenstate ghost-corrected exact exchange approximations. Symmetry eigenstate Hartree-exchange recovers distinctive features of the exact XC potential and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these approximations depend on ensemble weight, and it is shown that only the symmetry eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate XC potentials are discussed in the context of producing accurate optical gaps.
In the usual treatment of electronic structure, all matter has cusps in the electronic density at nuclei. Cusps can produce non-analytic behavior in time, even in response to perturbations that are time-analytic. We analyze these non-analyticities in a simple case from many perspectives. We describe a method, the s-expansion, that can be used in several such cases, and illustrate it with a variety of examples. These include both the sudden appearance of electric fields and disappearance of nuclei, in both one and three dimensions. When successful, the s-expansion yields the dominant short-time behavior, no matter how strong the external electric field, but agrees with linear response theory in the weak limit. We discuss the relevance of these results to time-dependent density functional theory.
This paper discusses the benefits of object-oriented programming to scientific computing, using our recent calculations of exciton binding energies with time-dependent density-functional theory (arXiv: 1302.6972) as a case study. We find that an object-oriented approach greatly facilitates the development, the debugging, and the future extension of the code by promoting code reusing. We show that parallelism is added easily in our code in a object-oriented fashion with ScaLAPACK, Boost::MPI and OpenMP.
Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (xc) functionals lack the proper long-range behavior. Furthermore, optical spectra of bulk solids calculated with TDDFT often lack the required resolution to distinguish discrete, weakly bound excitons from the continuum. We adapt the Casida equation formalism for molecular excitations to periodic solids, which allows us to obtain exciton binding energies directly. We calculate exciton binding energies for both small- and large-gap semiconductors and insulators, study the recently proposed bootstrap xc kernel [S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011)], and extend the formalism to triplet excitons.
The accurate description of the optical spectra of insulators and semiconductors remains an important challenge for time-dependent density-functional theory (TDDFT). Evidence has been given in the literature that TDDFT can produce bound as well as continuum excitons for specific systems, but there are still many unresolved basic questions concerning the role of dynamical exchange and correlation (xc). In particular, the role of the long spatial range and the frequency dependence of the xc kernel $f_{rm xc}$ for excitonic binding are still not very well explored. We present a minimal model for excitons in TDDFT, consisting of two bands from a one-dimensional Kronig-Penney model and simple approximate xc kernels, which allows us to address these questions in a transparent manner. Depending on the system, it is found that adiabatic xc kernels can produce a single bound exciton, and sometimes two bound excitons, where the long spatial range of $f_{rm xc}$ is not a necessary condition. It is shown how the Wannier model, featuring an effective electron-hole interaction, emerges from TDDFT. The collective, many-body nature of excitons is explicitly demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا