Do you want to publish a course? Click here

Using a circuit QED device, we demonstrate a simple qubit measurement pulse shape that yields fast ring-up and ring-down of the readout resonator regardless of the qubit state. The pulse differs from a square pulse only by the inclusion of additional constant-amplitude segments designed to effect a rapid transition from one steady-state population to another. Using a Ramsey experiment performed shortly after the measurement pulse to quantify the residual population, we find that compared to a square pulse followed by a delay, this pulse shape reduces the timescale for cavity ring-down by more than twice the cavity time constant. At low drive powers, this performance is achieved using pulse parameters calculated from a linear cavity model; at higher powers, empirical optimization of the pulse parameters leads to similar performance.
Three-dimensional microwave cavities have recently been combined with superconducting qubits in the circuit quantum electrodynamics (cQED) architecture. These cavities should have less sensitivity to dielectric and conductor losses at surfaces and interfaces, which currently limit the performance of planar resonators. We expect that significantly (>10^3) higher quality factors and longer lifetimes should be achievable for 3D structures. Motivated by this principle, we have reached internal quality factors greater than 0.5x10^9 and intrinsic lifetimes of 0.01 seconds for multiple aluminum superconducting cavity resonators at single photon energies and millikelvin temperatures. These improvements could enable long lived quantum memories with submicrosecond access times when strongly coupled to superconducting qubits.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with $T_2 sim 10 mu$s to $20 mu$s without the use of spin echo, and highly stable, showing no evidence for $1/f$ critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
The loss of amorphous hydrogenated silicon nitride (a-SiN$_{x}$:H) is measured at 30 mK and 5 GHz using a superconducting LC resonator down to energies where a single-photon is stored, and analyzed with an independent two-level system (TLS) defect model. Each a-SiN$_{x}$:H film was deposited with different concentrations of hydrogen impurities. We find that quantum-regime dielectric loss tangent $tandelta_{0}$ in a-SiN$_{x}$:H is strongly correlated with N-H impurities, including NH$_{2}$. By slightly reducing $x$ we are able to reduce $tandelta_0$ by approximately a factor of 50, where the best films show $tandelta_0$ $simeq$ 3 $times$ 10$^{-5}$.
We report measurements of Rabi oscillations and spectroscopic coherence times in an Al/AlOx/Al and three Nb/AlOx/Nb dc SQUID phase qubits. One junction of the SQUID acts as a phase qubit and the other junction acts as a current-controlled nonlinear isolating inductor, allowing us to change the coupling to the current bias leads in situ by an order of magnitude. We found that for the Al qubit a spectroscopic coherence time T2* varied from 3 to 7 ns and the decay envelope of Rabi oscillations had a time constant T = 25 ns on average at 80 mK. The three Nb devices also showed T2* in the range of 4 to 6 ns, but T was 9 to 15 ns, just about 1/2 the value we found in the Al device. For all the devices, the time constants were roughly independent of the isolation from the bias lines, implying that noise and dissipation from the bias leads were not the principal sources of dephasing and inhomogeneous broadening.
We report measurements of spectroscopic linewidth and Rabi oscillations in three thin-film dc SQUID phase qubits. One device had a single-turn Al loop, the second had a 6-turn Nb loop, and the third was a first order gradiometer formed from 6-turn wound and counter-wound Nb coils to provide isolation from spatially uniform flux noise. In the 6 - 7.2 GHz range, the spectroscopic coherence times for the gradiometer varied from 4 ns to 8 ns, about the same as for the other devices (4 to 10 ns). The time constant for decay of Rabi oscillations was significantly longer in the single-turn Al device (20 to 30 ns) than either of the Nb devices (10 to 15 ns). These results imply that spatially uniform flux noise is not the main source of decoherence or inhomogenous broadening in these devices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا