Do you want to publish a course? Click here

When a Bose-Einstein condensate is divided into two parts, that are subsequently released and overlap, interference fringes are observed. We show here that this interference is typical, in the sense that most wave functions of the condensate, randomly sampled out of a suitable ensemble, display interference. We make no hypothesis of decoherence between the two parts of the condensates.
278 - B.Leggio , A. Napoli , H. Nakazato 2011
A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wiesniak, Vedral and Brukner
Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for a pure state to be extracted asymptotically. Nevertheless, we find a way out of this difficulty by deriving an analytic expression of the reduced density matrix for a two-qubit system immersed in a bath. It is shown that we can still extract a pure state if the environment brings about only dephasing effects. In addition, for a dissipative environment, there is a possibility of obtaining a dominant pure state when we perform a finite number of measurements.
114 - K. Yuasa , P. Facchi , H. Nakazato 2008
Lateral effects are analyzed in the antibunching of a beam of free non-interacting fermions. The emission of particles from a source is dynamically described in a 3D full quantum field-theoretical framework. The size of the source and the detectors, as well as the temperature of the source are taken into account and the behavior of the visibility is scrutinized as a function of these parameters.
Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete applications.
A quantum system put in interaction with another one that is repeatedly measured is subject to a non-unitary dynamics, through which it is possible to extract subspaces. This key idea has been exploited to propose schemes aimed at the generation of pure quantum states (purification). All such schemes have so far been considered in the ideal situations of isolated systems. In this paper, we analyze the influence of non-negligible interactions with environment during the extraction process, with the scope of investigating the possibility of purifying the state of a system in spite of the sources of dissipation. A general framework is presented and a paradigmatic example consisting of two interacting spins immersed in a bosonic bath is studied. The effectiveness of the purification scheme is discussed in terms of purity for different values of the relevant parameters and in connection with the bath temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا