Do you want to publish a course? Click here

We consider the distribution of normalized Frobenius traces for two families of genus 3 hyperelliptic curves over Q that have large automorphism groups: y^2=x^8+c and y^2=x^7-cx with c in Q*. We give efficient algorithms to compute the trace of Frobenius for curves in these families at primes of good reduction. Using data generated by these algorithms, we obtain a heuristic description of the Sato-Tate groups that arise, both generically and for particular values of c. We then prove that these heuristic descriptions are correct by explicitly computing the Sato-Tate groups via the correspondence between Sato-Tate groups and Galois endomorphism types.
Let C/Q be the genus 3 Picard curve given by the affine model y^3=x^4-x. In this paper we compute its Sato-Tate group, show the generalized Sato-Tate conjecture for C, and compute the statistical moments for the limiting distribution of the normalized local factors of C.
We establish the group-theoretic classification of Sato-Tate groups of self-dual motives of weight 3 with rational coefficients and Hodge numbers h^{3,0} = h^{2,1} = h^{1,2} = h^{0,3} = 1. We then describe families of motives that realize some of these Sato-Tate groups, and provide numerical evidence supporting equidistribution. One of these families arises in the middle cohomology of certain Calabi-Yau threefolds appearing in the Dwork quintic pencil; for motives in this family, our evidence suggests that the Sato-Tate group is always equal to the full unitary symplectic group USp(4).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا