Do you want to publish a course? Click here

One of the greatest challenges in quantum information processing is the coherent control over quantum systems with an ever increasing number of particles. Within this endeavor, the harnessing of many-body entanglement against the effects of the environment is a pressing issue. Besides being an important concept from a fundamental standpoint, entanglement is recognized as a crucial resource for performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have implications in quantum computing, quantum simulations, secure quantum communication, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. Here we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement in open quantum systems. Entanglement is taken as a dynamic quantity, and we survey how it evolves due to the interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a diversity of dynamical behaviors. Contrary to single-particle quantities, that typically vanish only asymptotically in time, entanglement may disappear at a finite time. Moreover, important classes of entanglement show an exponential decay with the system size when subject to local noise, posing yet another threat to the already challenging scaling of quantum technologies. Results for the local and global noise cases are summarized. Robustness-enhancement techniques, scaling laws, statistical and geometrical aspects of multipartite-entanglement decay are also reviewed; all in order to give a broad picture of entanglement dynamics in open quantum systems addressed to both theorists and experimentalists inside and outside the field of quantum information.
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of perfect braiding operations, universal quantum computation is possible if the noise rate on a particular 4-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated classically: we explicitly show that the noisy ancilla is a convex mixture of Gaussian fermionic states in this region, while for noise rates below 53% we prove that the state is not a mixture of Gaussian states. These results were obtained by generalizing concepts in entanglement theory to the setting of Gaussian states and their convex mixtures. In particular we develop a complete set of criteria, namely the existence of a Gaussian-symmetric extension, which determine whether a state is a convex mixture of Gaussian states.
A full treatment for the scattering of an arbitrary number of bosons through a Bell multiport beam splitter is presented that includes all possible output arrangements. Due to exchange symmetry, the event statistics differs dramatically from the classical case in which the realization probabilities are given by combinatorics. A law for the suppression of output configurations is derived and shown to apply for the majority of all possible arrangements. Such multiparticle interference effects dominate at the level of single transition amplitudes, while a generic bosonic signature can be observed when the average number of occupied ports or the typical number of particles per port is considered. The results allow to classify in a common approach several recent experiments and theoretical studies and disclose many accessible quantum statistical effects involving many particles.
We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا