Do you want to publish a course? Click here

Non-Orthogonal Multiple Access (NOMA) has been proposed to enhance the Spectrum Efficiency (SE) and cell-edge capacity. This paper considers the massive Multi-Input Multi-Output (MIMO) with Non-Orthogonal Multiple Access (NOMA) encoding. The close-form expression of capacity of the massive MIMO with NOMA is given here. Apart from the previous Successive Interference Cancellation (SIC) method, the Power Hard Limiter (PHD) is introduced here for better reality implement.
Energy Efficiency (EE) is a big issue in 5th Generation Wireless Communications (5G) on condition that the number of access User Equipments (UEs) are exploding and more antennas should be equipped in one Base Station (BS). In EE studies, prior literatures focus on the energy consumption of single separated BS coverage area or through scheduling mechanism or network coding method. But some other elements are ignored in those literatures, such as the energy consumption of machine room, circuit, etc. In this paper, to be more closer to the reality, based on the Cloud Radio Access Network (C-RAN), we modify its traditional structure for easier layout of sleeping mechanism in the real world, study the EE issue within a comprehensive view while taking more elements into consideration. We modified the traditional C-RAN structure with the purpose of much easily adopting the sleeping mechanism with on-off selection method. Afterwards, the EE issue is modeled into a mathematical optimizing problem and its solution is given by a tractable method. The analysis of sum capacity in one cluster of this modified structure is addressed first. Then based on the analysis, the EE issue is studied with a comprehensive view while taking more elements into consideration. In the next step, we convert it into an optimization problem and give its solution with the sleeping techniques. Comparing with prior works, this proposal is of better performance for the merit of comprehensive vision and easier layout characteristic.
Towards next generation communications, Energy Efficiency (EE) attracts lots of attentions nowadays. Some innovative techniques have been proposed in prior literatures, especially the sleep mechanism of base station (BS). Yet how to sleep and when to sleep are still vague concepts. Another, most of the studies focus on the cellular section or core networks separately while integral and comprehensive version is neglected in prior literatures. In this paper,the integral optimization structure is studied based on cloud radio network (C-RAN) and information centric network (ICN) that raised latest combined with the sleep mode. The original C-RAN and ICN structures are amended in terms of reality application of sleep techniques. While adopting the sleep techniques both in core and cellular, apart from previous works, a transition smooth method that solve the current surge problems which is ignored before is further proposed. Based on the new method, it will be much more feasible to adopt the sleep techniques by knowing the appropriate occasion for transition between sleep and idle mode. Comprehensive computer based simulation results demonstrate that this integer proposal achieves better EE feature with negligible impact on quality of service (QoS) of user equipments (UEs).
196 - Di Zhang , Zhenyu Zhou , Keping Yu 2014
Massive multiple-input multiple-output (Massive MIMO) has been realized as a promising technology for next generation wireless mobile communications, in which Spectral efficiency (SE) and energy efficiency (EE) are two critical issues. Prior estimates have indicated that 57% energy of the cellular system need to be supplied by the operator, especially to feed the base station (BS). While varies scheduling studies concerned on the user equipment (UE) to reduce the total energy consumption instead of BS. Fewer literatures address EE issues from a BS perspective. In this paper, an EE scheme is proposed by reducing the energy consumption of BS. The transmission model and parameters related to EE is formulated first. Afterwards, an cellular partition zooming (CPZ) scheme is proposed where the BS can zoom in to maintain the coverage area. Specifically, if no user exists in the rare area of the coverage, BS will zoom out to sleep mode to save energy. Comprehensive simulation results demonstrate that CPZ has better EE performance with negligible impact on transmission rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا