Do you want to publish a course? Click here

365 - Jack Raymond , David Saad 2017
Sparse Code Division Multiple Access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of non-zero elements, is presented and analysed using methods of statistical physic s. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code.
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process global information and distribute paths optimally. Statistical properties such as scaling with system size and number of paths, average path-length and the transition to the frustrated regime are analysed. The performance of the suggested algorithm is evaluated through a comparison against a greedy algorithm.
Typical properties of computing circuits composed of noisy logical gates are studied using the statistical physics methodology. A growth model that gives rise to typical random Boolean functions is mapped onto a layered Ising spin system, which facilitates the study of their ability to represent arbitrary formulae with a given level of error, the tolerable level of gate-noise, and its dependence on the formulae depth and complexity, the gates used and properties of the function inputs. Bounds on their performance, derived in the information theory literature via specific gates, are straightforwardly retrieved, generalized and identified as the corresponding typical-case phase transitions. The framework is employed for deriving results on error-rates, function-depth and sensitivity, and their dependence on the gate-type and noise model used that are difficult to obtain via the traditional methods used in this field.
95 - Jack Raymond , David Saad 2009
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdos-Renyi graph structures above the percolation threshold, and to Bethe lattices when appropriate boundary conditions apply. In this paper we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high temperature paramagnetic, spin glass and ferromagnetic phases by perturbative schemes. We present results of a replica symmetric variational approximations where perturbative approaches fail at lower temperature. Results demonstrate novel reentrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high temperature transitions is found to be sensitive to the connectivity profile in the sparse sub-graph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
296 - Jack Raymond , David Saad 2009
Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.
Colouring sparse graphs under various restrictions is a theoretical problem of significant practical relevance. Here we consider the problem of maximizing the number of different colours available at the nodes and their neighbourhoods, given a predetermined number of colours. In the analytical framework of a tree approximation, carried out at both zero and finite temperatures, solutions obtained by population dynamics give rise to estimates of the threshold connectivity for the incomplete to complete transition, which are consistent with those of existing algorithms. The nature of the transition as well as the validity of the tree approximation are investigated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا