No Arabic abstract
Colouring sparse graphs under various restrictions is a theoretical problem of significant practical relevance. Here we consider the problem of maximizing the number of different colours available at the nodes and their neighbourhoods, given a predetermined number of colours. In the analytical framework of a tree approximation, carried out at both zero and finite temperatures, solutions obtained by population dynamics give rise to estimates of the threshold connectivity for the incomplete to complete transition, which are consistent with those of existing algorithms. The nature of the transition as well as the validity of the tree approximation are investigated.
We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We locate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.
The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.
Given a separation oracle $mathsf{SO}$ for a convex function $f$ that has an integral minimizer inside a box with radius $R$, we show how to find an exact minimizer of $f$ using at most (a) $O(n (n + log(R)))$ calls to $mathsf{SO}$ and $mathsf{poly}(n, log(R))$ arithmetic operations, or (b) $O(n log(nR))$ calls to $mathsf{SO}$ and $exp(n) cdot mathsf{poly}(log(R))$ arithmetic operations. When the set of minimizers of $f$ has integral extreme points, our algorithm outputs an integral minimizer of $f$. This improves upon the previously best oracle complexity of $O(n^2 (n + log(R)))$ for polynomial time algorithms obtained by [Grotschel, Lovasz and Schrijver, Prog. Comb. Opt. 1984, Springer 1988] over thirty years ago. For the Submodular Function Minimization problem, our result immediately implies a strongly polynomial algorithm that makes at most $O(n^3)$ calls to an evaluation oracle, and an exponential time algorithm that makes at most $O(n^2 log(n))$ calls to an evaluation oracle. These improve upon the previously best $O(n^3 log^2(n))$ oracle complexity for strongly polynomial algorithms given in [Lee, Sidford and Wong, FOCS 2015] and [Dadush, Vegh and Zambelli, SODA 2018], and an exponential time algorithm with oracle complexity $O(n^3 log(n))$ given in the former work. Our result is achieved via a reduction to the Shortest Vector Problem in lattices. We show how an approximately shortest vector of certain lattice can be used to effectively reduce the dimension of the problem. Our analysis of the oracle complexity is based on a potential function that captures simultaneously the size of the search set and the density of the lattice, which we analyze via technical tools from convex geometry.
Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the NP-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this thesis is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named locked constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.
We introduce and study the random locked constraint satisfaction problems. When increasing the density of constraints, they display a broad clustered phase in which the space of solutions is divided into many isolated points. While the phase diagram can be found easily, these problems, in their clustered phase, are extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. We thus propose new benchmarks of really hard optimization problems and provide insight into the origin of their typical hardness.