Do you want to publish a course? Click here

In order to clarify a possible role of small-scale dynamo in formation of solar magnetic field, we suggest an observational test for small-scale dynamo action based on statistics of anti-Hale sunspot groups. As we have shown, according to theoretical expectations the small-scale dynamo action has to provide a population of sunspot groups which do not follow the Hale polarity law, and the density of such groups on the time-latitude diagram is expected to be independent on the phase of the solar cycle. Correspondingly, a percentage of the anti-Hale groups is expected to reach its maximum values during solar minima. For several solar cycles, we considered statistics of anti-Hale groups obtained by several scientific teams, including ours, to find that the percentage of anti-Hale groups becomes indeed maximal during a solar minimum. Our interpretation is that this fact may be explained by the small-scale dynamo action inside the solar convective zone.
Recent progress in observational studies of magnetic activity in M dwarfs urgently requires support from ideas of stellar dynamo theory. We propose a strategy to connect observational and theoretical studies. In particular, we suggest four magnetic configurations that appear relevant to dwarfs from the viewpoint of the most conservative version of dynamo theory, and discuss observational tests to identify the configurations observationally. As expected, any such identification contains substantial uncertainties. However the situation in general looks less pessimistic than might be expected. Several identifications between the phenomenology of individual stars and dynamo models are suggested. Remarkably, all models discussed predict substantial surface magnetic activity at rather high stellar latitudes. This prediction looks unexpected from the viewpoint of our experience observing the Sun (which of course differs in some fundamental ways from these late-type dwarfs). We stress that a fuller understanding of the topic requires a long-term (at least 15 years) monitoring of M dwarfs by Zeeman-Doppler imaging.
165 - D. Moss , R. Beck , D. Sokoloff 2013
Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims. The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) call for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods. We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results. A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and {alpha}-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. (abbrev). Conclusions. We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and associated with spatially modulated small-scale magnetic fluctuations, caused by enhanced star formation rates within the material arms.
329 - D. Sokoloff , H. Zhang , D. Moss 2012
We investigate to what extent the current helicity distribution observed in solar active regions is compatible with solar dynamo models. We use an advanced 2D mean-field dynamo model with dynamo action largely concentrated near the bottom of the convective zone, and dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic 2D mean-field dynamo model with simple algebraic alpha quenching only. Using these numerical models we obtain butterfly diagrams for both the small-scale current helicity and the large-scale magnetic helicity, and compare them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by $-A cdot B$ evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here $B$ and $A$ are respectively the dynamo generated mean magnetic field and its vector potential.
We study the possibility to reproduce the statistical relations of the sunspot activity cycle, like the so-called Waldmeier relations, the cycle period - amplitude and the cycle rise rate - amplitude relations, by means of the mean field dynamo models with the fluctuating alpha-effect. The dynamo model includes the long-term fluctuations of the alpha-effect and two types of the nonlinear feedback of the mean-field on the alpha-effect including the algebraic quenching and the dynamic quenching due to the magnetic helicity generation. We found that the models are able to reproduce qualitatively and quantitatively the inclination and dispersion across the Waldmeier relations with the 20% fluctuations of the alpha-effect. The models with the dynamic quenching are in a better agreement with observations than the models with the algebraic alpha-quenching. We compare the statistical distributions of the modeled parameters, like the amplitude, period, the rise and decay rates of the sunspot cycles, with observations.
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sources in Faraday space (Faraday screens). Here we consider how to apply RM Synthesis to reconstruct the Faraday dispersion function, aiming at the further extraction of information concerning the magnetic fields of extended sources, e.g. galaxies. The main attention is given to two related novelties in the method, i.e. the symmetry argument in Faraday space and the wavelet technique. We give a relation between our method and the previous applications of RM Synthesis to point-like sources. We demonstrate that the traditional RM Synthesis for a point-like source indirectly implies a symmetry argument and, in this sense, can be considered as a particular case of the method presented here. Investigating the applications of RM Synthesis to polarization details associated with small-scale magnetic fields, we isolate an option which was not covered by the ideas of the Burn theory, i.e. using quantities averaged over small-scale fluctuations of magnetic field and electron density. We describe the contribution of small-scale fields in terms of Faraday dispersion and beam depolarization. We consider the complex polarization for RM Synthesis without any averaging over small-scale fluctuations of magnetic field and electron density and demonstrate that it allows us to isolate the contribution from small-scale field.
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the negative lambda square. We introduce a simple method for continuation of the observed complex polarized intensity into this domain using symmetry arguments. The method is suggested in context of magnetic field recognition in galactic disks where the magnetic field is supposed to have a maximum in the equatorial plane. The method is quite simple when applied to a single Faraday-rotating structure on the line of sight. Recognition of several structures on the same line of sight requires a more sophisticated technique. We also introduce a wavelet-based algorithm which allows us to consider a set of isolated structures. The method essentially improves the possibilities for reconstruction of complicated Faraday structures using the capabilities of modern radio telescopes.
We study magnetic field evolution in flows with fluctuating in time governing parameters in electrically conducting fluid. We use a standard mean-field approach to derive equations for large-scale magnetic field for the fluctuating ABC-flow as well as for the fluctuating Roberts flow. The derived mean-field dynamo equations have growing solutions with growth rate of the large-scale magnetic field which is not controlled by molecular magnetic diffusivity. Our study confirms the Zeldovich idea that the nonstationarity of the fluid flow may remove the obstacle in large-scale dynamo action of classic stationary flows.
172 - D. Moss , D. Sokoloff , I. Usoskin 2008
We consider to what extent the long-term dynamics of cyclic solar activity in the form of Grand Minima can be associated with random fluctuations of the parameters governing the solar dynamo. We consider fluctuations of the alpha-coefficient in the conventional Parker migratory dynamo, and also in slightly more sophisticated dynamo models, and demonstrate that they can mimic the gross features of the phenomenon of the occurrence of Grand Minima over a suitable parameter range. The temporal distribution of these Grand Minima appears chaotic, with a more or less exponential waiting time distribution, typical of Poisson processes. In contrast however, the available reconstruction of Grand Minima statistics based on cosmogenic isotope data demonstrates substantial deviations from this exponential law. We were unable to reproduce the non-Poissonic tail of the waiting time distribution either in the framework of a simple alpha-quenched Parker model, or in its straightforward generalization, nor in simple models with feedback on the differential rotation. We suggest that the disagreement may only be apparent and is plausibly related to the limited observational data, and that the observations and results of numerical modeling can be consistent and represent physically similar dynamo regimes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا