Do you want to publish a course? Click here

We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J2, we find a Neel phase, a plaquette valence-bond (PVB) phase with a finite spin gap, and a possible spin liquid in a small region of J2 between these two phases. From the finite-size scaling of the magnetic order parameter, we estimate that the Neel order vanishes at J2/J1~0.44. For 0.5<J2/J1<0.61, we find dimer correlations and PVB textures whose decay lengths grow strongly with increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer correlations reveal the s-wave character of the PVB order. For 0.44<J2/J1<0.5, spin order, dimer order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width, which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results with earlier numerical studies.
We perform an exact diagonalization study of the topological order in topological flat band models through calculating entanglement entropy and spectra of low energy states. We identify multiple independent minimal entangled states, which form a set of orthogonal basis states for the ground-state manifold. We extract the modular transformation matrices S (U) which contains the information of mutual (self) statistics, quantum dimensions and fusion rule of quasi-particles. Moreover, we demonstrate that these matrices are robust and universal in the whole topological phase against different perturbations until the quantum phase transition takes place.
We show that strained or deformed honeycomb lattices are promising platforms to realize fractional topological quantum states in the absence of any magnetic field. The strained induced pseudo magnetic fields are oppositely oriented in the two valleys [1-3] and can be as large as 60-300 Tesla as reported in recent experiments [4,5]. For strained graphene at neutrality, a spin or a valley polarized state is predicted depending on the value of the onsite Coulomb interaction. At fractional filling, the unscreened Coulomb interaction leads to a valley polarized Fractional Quantum Hall liquid which spontaneously breaks time reversal symmetry. Motivated by artificial graphene systems [5-8], we consider tuning the short range part of interactions, and demonstrate that exotic valley symmetric states, including a valley Fractional Topological Insulator and a spin triplet superconductor, can be stabilized by such interaction engineering.
We study a spin-1/2 system with Heisenberg plus ring exchanges on a four-leg triangular ladder using the density matrix renormalization group and Gutzwiller variational wave functions. Near an isotropic lattice regime, for moderate to large ring exchanges we find a spin Bose-metal phase with a spinon Fermi sea consisting of three partially filled bands. Going away from the triangular towards the square lattice regime, we find a staggered dimer phase with dimers in the transverse direction, while for small ring exchanges the system is in a featureless rung phase. We also discuss parent states and a possible phase diagram in two dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا