Do you want to publish a course? Click here

Plaquette Ordered Phase and Quantum Phase Diagram in the Spin-1/2 J1-J2 Square Heisenberg Model

185   0   0.0 ( 0 )
 Added by Shou-Shu Gong
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin liquid. We use the density matrix renormalization group approach with explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with different boundary conditions. With increasing J2, we find a Neel phase, a plaquette valence-bond (PVB) phase with a finite spin gap, and a possible spin liquid in a small region of J2 between these two phases. From the finite-size scaling of the magnetic order parameter, we estimate that the Neel order vanishes at J2/J1~0.44. For 0.5<J2/J1<0.61, we find dimer correlations and PVB textures whose decay lengths grow strongly with increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer correlations reveal the s-wave character of the PVB order. For 0.44<J2/J1<0.5, spin order, dimer order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width, which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results with earlier numerical studies.



rate research

Read More

We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antiferromagnet, i.e., at J_2=0. We investigate the static spin structure factor, the magnetic correlation lengths, and the spin gaps. Our results are consistent with the absence of magnetic order in a narrow region around J_2approx 0, although strong finite-size effects do not allow us to accurately determine the phase boundaries. This result is in agreement with the presence of an extended spin-liquid region, as it has been proposed recently. Outside the disordered region, we find that for ferromagnetic and antiferromagnetic J_2 the ground state displays signatures of the magnetic order of the sqrt{3}timessqrt{3} and the q=0 type, respectively. Finally, we focus on the structure of the entanglement spectrum (ES) in the q=0 ordered phase. We discuss the importance of the choice of the bipartition on the finite-size structure of the ES.
61 - V. Lante , A. Parola 2006
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength physics of the model is derived from the quantum hamiltonian. The structure of the resulting non linear sigma model allows to recover the known spin wave results in the collinear regime, supports the presence of an Ising phase transition at finite temperature and suggests the possible occurrence of a non-magnetic ground state breaking rotational symmetry. By means of Lanczos diagonalizations we investigate the spin system at T=0, focusing our attention on the region where the collinear order parameter is strongly suppressed by quantum fluctuations and a transition to a non-magnetic state occurs. Correlation functions display a remarkable size independence and allow to identify the transition between the magnetic and non-magnetic region of the phase diagram. The numerical results support the presence of a non-magnetic phase with orientational ordering.
191 - R. L. Doretto 2013
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond operator representation for the spin operators in terms of singlet, triplet, and quintet boson operators. The formalism is then applied to the J_1-J_2 model and an effective interacting boson model in terms of singlets and triplets is derived. The effective model is analyzed within the harmonic approximation and the previous results of Zhitomirsky and Ueda [Phys. Rev. B 54, 9007 (1996)] are recovered. By perturbatively including cubic (triplet-triplet-triplet and singlet-triplet-triplet) and quartic interactions, we find that the plaquette valence-bond solid phase is stable within the parameter region 0.34 < J_2/J_1 < 0.59, which is narrower than the harmonic one. Differently from the harmonic approximation, the excitation gap vanishes at both critical couplings J_2 = 0.34 J_1 and J_2 = 0.59 J_1. Interestingly, for J_2 < 0.48 J_1, the excitation gap corresponds to a singlet-triplet excitation at the $Gamma$ point while, for J_2 > 0.48 J_1, it is related to a singlet-singlet excitation at the X = (pi/2,0) point of the tetramerized Brillouin zone.
205 - M. Sadrzadeh , A. Langari 2014
We study the effect of quantum fluctuations by means of a transverse magnetic field ($Gamma$) on the antiferromagnetic $J_1-J_2$ Ising model on the checkerboard lattice, the two dimensional version of the pyrochlore lattice. The zero-temperature phase diagram of the model has been obtained by employing a plaquette operator approach (POA). The plaquette operator formalism bosonizes the model, in which a single boson is associated to each eigenstate of a plaquette and the inter-plaquette interactions define an effective Hamiltonian. The excitations of a plaquette would represent an-harmonic fluctuations of the model, which lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a plaquette ordered solid (RPS) state, which breaks lattice translational symmetry, in addition to a unique collinear phase for $J_2>J_1$. The bosonic excitation gap vanishes at the critical points to the N{e}el ($J_2 < J_1$) and collinear ($J_2 > J_1$) ordered phases, which defines the critical phase boundaries. At the homogeneous coupling ($J_2=J_1$) and its close neighborhood, the (canted) RPS state, established from an-harmonic fluctuations, lasts for low fields, $Gamma/J_1lesssim 0.3$, which is followed by a transition to the quantum paramagnet (polarized) phase at high fields. The transition from RPS state to the N{e}el phase is either a deconfined quantum phase transition or a first order one, however a continuous transition occurs between RPS and collinear phases.
We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$. We provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior. There also exists a valence-bond solid (VBS) phase in a very narrow region $0.56lesssim J_2/J_1leq0.61$ before the system enters the well known collinear antiferromagnetic phase. We stress that our work gives rise to the first solid PEPS results beyond the well established density matrix renormalization group (DMRG) through one-to-one direct benchmark for small system sizes. Thus our numerical evidences explicitly demonstrate the huge power of PEPS for solving long-standing 2D quantum many-body problems. The physical nature of the discovered gapless QSL and potential experimental implications are also addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا