Do you want to publish a course? Click here

Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. By Olshanskii-Osin-Sapir, that property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy. We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has many periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditchs properties that are weaker than local compactness. This gives a new proof of Behrstocks result that every pseudo-Anosov element in a mapping class group is Morse. On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $mathbb{Q}$-rank is 1 and when the lattice is $SL_n(mathcal{O}_S)$ where $nge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $mathcal{O}_S$ is the corresponding ring of $S$-integers.
In this paper we provide a framework for the study of isoperimetric problems in finitely generated group, through a combinatorial study of universal covers of compact simplicial complexes. We show that, when estimating filling functions, one can restrict to simplicial spheres of particular shapes, called round and unfolded, provided that a bounded quasi-geodesic combing exists. We prove that the problem of estimating higher dimensional divergence as well can be restricted to round spheres. Applications of these results include a combinatorial analogy of the Federer--Fleming inequality for finitely generated groups, the construction of examples of $CAT(0)$--groups with higher dimensional divergence equivalent to $x^d$ for every degree d [arXiv:1305.2994], and a proof of the fact that for bi-combable groups the filling function above the quasi-flat rank is asymptotically linear [Behrstock-Drutu].
In this paper we investigate the higher dimensional divergence functions of mapping class groups of surfaces and of CAT(0)--groups. We show that, for mapping class groups of surfaces, these functions exhibit phase transitions at the rank (as measured by thrice the genus plus the number of punctures minus 3). We also provide inductive constructions of CAT(0)--spaces with co-compact group actions, for which the divergence below the rank is (exactly) a polynomial function of our choice, with degree arbitrarily large compared to the dimension.
We study the geometry of infinitely presented groups satisfying the small cancelation condition C(1/8), and define a standard decomposition (called the criss-cross decomposition) for the elements of such groups. We use it to prove the Rapid Decay property for groups with the stronger small cancelation property C(1/10). As a consequence, the Metric Approximation Property holds for the reduced C*-algebra and for the Fourier algebra of such groups. Our method further implies that the kernel of the comparison map between the bounded and the usual group cohomology in degree 2 has a basis of power continuum. The present work can be viewed as a first non-trivial step towards a systematic investigation of direct limits of hyperbolic groups.
In this paper we explore relationships between divergence and thick groups, and with the same techniques we estimate lengths of shortest conjugators. We produce examples, for every positive integer n, of CAT(0) groups which are thick of order n and with polynomial divergence of order n+1, both these phenomena are new. With respect to thickness, these examples show the non-triviality at each level of the thickness hierarchy defined by Behrstock-Drutu-Mosher. With respect to divergence our examples resolve questions of Gromov and Gersten (the divergence questions were also recently and independently answered by Macura. We also provide general tools for obtaining both lower and upper bounds on the divergence of geodesics and spaces, and we give the definitive lower bound for Morse geodesics in the CAT(0) spaces, generalizing earlier results of Kapovich-Leeb and Bestvina-Fujiwara. In the final section, we turn to the question of bounding the length of the shortest conjugators in several interesting classes of groups. We obtain linear and quadratic bounds on such lengths for classes of groups including 3-manifold groups and mapping class groups (the latter gives new proofs of corresponding results of Masur-Minsky in the pseudo-Anosov case and Tao in the reducible case).
This is an addendum to arXiv: 0810.5376. We show, using our methods and an auxiliary result of Bestvina-Bromberg-Fujiwara, that a finitely generated group with infinitely many pairwise non-conjugate homomorphisms to a mapping class group virtually acts non-trivially on an $R$-tree, and, if it is finitely presented, it virtually acts non-trivially on a simplicial tree
We prove the existence of a close connection between spaces with measured walls and median metric spaces. We then relate properties (T) and Haagerup (a-T-menability) to actions on median spaces and on spaces with measured walls. This allows us to explore the relationship between the classical properties (T) and Haagerup and the
118 - Cornelia Drutu 2008
We explain how the Transference Principles from Diophantine approximation can be interpreted in terms of geometry of the locally symmetric spaces $T_n=SO(n) backslash SL(n,R) /SL(n,Z)$ with $n>1$, and how, via this dictionary, they become transparent geometric remarks and can be easily proved. Indeed, a finite family of linear forms is naturally identified to a locally geodesic ray in a space $T_n$ and the way this family is approximated is reflected by the heights at which the ray rises in the cuspidal end. The only difference between the two types of approximation appearing in a Transference Theorem is that the height is measured with respect to different rays in $W$, a Weyl chamber in $T_n$. Thus the Transference Theorem is equivalent to a relation between the Busemann functions of two rays in $W$. This relation is easy to establish on $W$, because restricted to it the two Busemann functions become two linear forms. Since $T_n$ is at finite Hausdorff distance from $W$, the same relation is satisfied up to a bounded perturbation on the whole of $T_n$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا