Do you want to publish a course? Click here

Divergence, thick groups, and short conjugators

473   0   0.0 ( 0 )
 Added by Jason Behrstock
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we explore relationships between divergence and thick groups, and with the same techniques we estimate lengths of shortest conjugators. We produce examples, for every positive integer n, of CAT(0) groups which are thick of order n and with polynomial divergence of order n+1, both these phenomena are new. With respect to thickness, these examples show the non-triviality at each level of the thickness hierarchy defined by Behrstock-Drutu-Mosher. With respect to divergence our examples resolve questions of Gromov and Gersten (the divergence questions were also recently and independently answered by Macura. We also provide general tools for obtaining both lower and upper bounds on the divergence of geodesics and spaces, and we give the definitive lower bound for Morse geodesics in the CAT(0) spaces, generalizing earlier results of Kapovich-Leeb and Bestvina-Fujiwara. In the final section, we turn to the question of bounding the length of the shortest conjugators in several interesting classes of groups. We obtain linear and quadratic bounds on such lengths for classes of groups including 3-manifold groups and mapping class groups (the latter gives new proofs of corresponding results of Masur-Minsky in the pseudo-Anosov case and Tao in the reducible case).



rate research

Read More

In this paper we provide a framework for the study of isoperimetric problems in finitely generated group, through a combinatorial study of universal covers of compact simplicial complexes. We show that, when estimating filling functions, one can restrict to simplicial spheres of particular shapes, called round and unfolded, provided that a bounded quasi-geodesic combing exists. We prove that the problem of estimating higher dimensional divergence as well can be restricted to round spheres. Applications of these results include a combinatorial analogy of the Federer--Fleming inequality for finitely generated groups, the construction of examples of $CAT(0)$--groups with higher dimensional divergence equivalent to $x^d$ for every degree d [arXiv:1305.2994], and a proof of the fact that for bi-combable groups the filling function above the quasi-flat rank is asymptotically linear [Behrstock-Drutu].
318 - Andrew Putman 2021
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a surface group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latter theorem was proved by Hamenstadt using different methods). As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of MCG(S); a characterization of the image of the curve-complex projection map from MCG(S) to the product of the curve complexes of essential subsurfaces of S; and a construction of Sigma-hulls in MCG(S), an analogue of convex hulls.
Motivated by the construction of free quandles and Dehn quandles of orientable surfaces, we introduce Dehn quandles of groups with respect to their subsets. As a characterisation, we prove that Dehn quandles are precisely those quandles which embed naturally into their enveloping groups. We prove that the enveloping group of the Dehn quandle of a given group with respect to its generating set is a central extension of that group, and that enveloping groups of Dehn quandles of Artin groups and link groups with respect to their standard generating sets are the groups themselves. We discuss orderability of Dehn quandles and prove that free involutory quandles are left orderable whereas certain generalised Alexander quandles are bi-orderable. Specialising to surfaces, we give generating sets for Dehn quandles of mapping class groups of orientable surfaces with punctures and compute their automorphism groups. As applications, we recover a result of Niebrzydowski and Przytycki proving that the knot quandle of the trefoil knot is isomorphic to the Dehn quandle of the torus and also extend a result of Yetter on epimorphisms of Dehn quandles of orientable surfaces onto certain involutory homological quandles. Finally, we show that involutory quotients of Dehn quandles of closed orientable surfaces of genus less than four are finite.
In this paper we investigate the higher dimensional divergence functions of mapping class groups of surfaces and of CAT(0)--groups. We show that, for mapping class groups of surfaces, these functions exhibit phase transitions at the rank (as measured by thrice the genus plus the number of punctures minus 3). We also provide inductive constructions of CAT(0)--spaces with co-compact group actions, for which the divergence below the rank is (exactly) a polynomial function of our choice, with degree arbitrarily large compared to the dimension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا