Do you want to publish a course? Click here

163 - Hui Wang , Chuntai Shi , Jun Hu 2015
A major obstacle to using SQUIDs as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be $O_2$ molecules adsorbed on the surface. Using density functional theory calculations, we find that an $O_2$ molecule adsorbed on an {alpha}-alumina surface has a magnetic moment of ~1.8 {mu}B. When the spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic XY spins on a square lattice find 1/f magnetization noise, consistent with flux noise in Al SQUIDs.
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-filling when 4V > U gives way to a d_{xy} -wave superconducting instability away from half-filling, when the Fermi surface is not perfectly nested, and for sufficiently large repulsive and a range of on-site repulsive interaction. In addition, when nesting is further suppressed and in presence of a nearest-neighbor attraction, a triplet time-reversal breaking (p_x + ip_y)-wave pairing instability emerges, competing with the d_{x2+y2} pairing state that is known to dominate at fillings just slightly away from half. At even smaller fillings, where the Fermi surface no longer presents any nesting, the (p_x +ip_y)-wave superconducting phase dominates in the whole regime of on-site repulsions and nearest-neighbor attractions, while d_{xy}-pairing occurs in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would be required, in addition to rotation of the system to create vortices. We discuss possible ways of experimentally engineering the required interaction terms in a cold atom system.
We study a two species fermion mixture with different populations on a square lattice modeled by a Hubbard Hamiltonian with on-site inter-species repulsive interaction. Such a model can be realized in a cold atom system with fermionic atoms in two different hyperfine states loaded on an optical lattice and with tunable inter-species interaction strength via external fields. For a two-dimensional square lattice, when at least one of the fermion species is close to half-filling, the system is highly affected by lattice effects. With the majority species near half-filling and varying densities for the minority species, we find that several correlated phases emerge as the ground state, including a spin density wave state, a charge density wave state with stripe structure, and various p-wave BCS pairing states for both species. We study this system using a functional renormalization group method, determine its phase diagram at weak coupling, discuss the origin and characteristics of each phase, and provide estimates for the critical temperatures.
We study proximity-induced superconductivity in gold nanowires as a function of the length of the nanowire, magnetic field, and excitation current. Short nanowires exhibit a sharp superconducting transition, whereas long nanowires show nonzero resistance. At intermediate lengths, however, we observe two sharp transitions; the normal and superconducting regions are separated by what we call the mini-gap phase. Additionally, we detect periodic oscillations in the differential magnetoresistance. We provide a theoretical model for the mini-gap phase as well as the periodic oscillations in terms of the coexistence of proximity-induced superconductivity with a normal region near the center of the wire, created either by temperature or application of a magnetic field.
There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variational study, we consider the Fermi sea, the Pfaffian paired state, and bubble and stripe phases of composite fermions, and find that the Fermi sea state is favored for a wide range of transverse thickness. However, when we incorporate interactions between composite fermions through composite-fermion diagonalization on systems with up to 25 composite fermions, we find that a gap opens at the Fermi level, suggesting that inter-composite fermion interaction can induce fractional quantum Hall effect at $ u=2+3/8$. The resulting state is seen to be distinct from the Pfaffian wave function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا