Do you want to publish a course? Click here

Candidate source of flux noise in SQUIDs: adsorbed oxygen molecules

184   0   0.0 ( 0 )
 Added by Clare C. Yu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A major obstacle to using SQUIDs as qubits is flux noise. We propose that the heretofore mysterious spins producing flux noise could be $O_2$ molecules adsorbed on the surface. Using density functional theory calculations, we find that an $O_2$ molecule adsorbed on an {alpha}-alumina surface has a magnetic moment of ~1.8 {mu}B. When the spin is oriented perpendicular to the axis of the O-O bond, the barrier to spin rotations is about 10 mK. Monte Carlo simulations of ferromagnetically coupled, anisotropic XY spins on a square lattice find 1/f magnetization noise, consistent with flux noise in Al SQUIDs.



rate research

Read More

The origin of magnetic flux noise in Superconducting Quantum Interference Devices with a power spectrum scaling as $1/f$ ($f$ is frequency) has been a puzzle for over 20 years. This noise limits the decoherence time of superconducting qubits. A consensus has emerged that the noise arises from fluctuating spins of localized electrons with an areal density of $5times10^{17}$m$^{-2}$. We show that, in the presence of potential disorder at the metal-insulator interface, some of the metal-induced gap states become localized and produce local moments. A modest level of disorder yields the observed areal density.
We report measurements of transfer functions and flux shifts of 20 on-chip high T$_C$ DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high T$_C$ thin film technology and they were single layer ones, having 140 nm thickness of YBa$_2$Cu$_3$O$_{7-x}$ film deposited by laser ablation onto MgO bicrystal substrates with 24$^0$ misorientation angle. For every SQUID the parameters of its intrinsic asymmetry, i. e., the density of critical current and resistivity of every junction, were measured directly and independently. We showed that the main reason for the on-chip spreading of SQUIDs voltage-current and voltage-flux characteristics was the intrinsic asymmetry. We found that for SQUIDs with a relative large inductance ($L>120 $ pH) both the voltage modulation and the transfer function were not very sensitive to the junctions asymmetry, whereas SQUIDs with smaller inductance ($Lsimeq 65-75 $ pH) were more sensitive. The results obtained in the paper are important for the implementation in the sensitive instruments based on high T$_C$ SQUID arrays and gratings.
Motivated by recent observations of chiral-induced magnetization and spin-selective transport we studied the effect of chiral molecules on conventional BCS superconductors. By applying scanning tunneling spectroscopy, we demonstrate that the singlet-pairing s-wave order parameter of Nb is significantly altered upon adsorption of chiral polyalanine alpha-helix molecules on its surface. The tunneling spectra exhibit zero-bias conductance peaks embedded inside gaps or gap-like features, suggesting the emergence of unconventional triplet-pairing components with either d-wave or p-wave symmetry, as corroborated by simulations. These results may open a way for realizing simple superconducting spintroinics devices.
We present a new method to measure 1/f noise in Josephson quantum bits (qubits) that yields low-frequency spectra below 1Hz. Comparison of noise taken at positive and negative bias of a phase qubit shows the dominant noise source to be flux noise and not junction critical-current noise, with a magnitude similar to that measured previously in other systems. Theoretical calculations show that the level of flux noise is not compatible with the standard model of noise from two-level state defects in the surface oxides of the films.
Focused ion beam (FIB) technology has been used to fabricate miniature Nb DC SQUIDs which incorporate resistively-shunted microbridge junctions and a central loop with a hole diameter ranging from 1058 nm to 50 nm. The smallest device, with a 50 nm hole diameter, has a white flux noise level of 2.6 microphy_{0}/Hz^{0.5} at 10^{4} Hz. The scaling of the flux noise properties and focusing effect of the SQUID with the hole size were examined. The observed low-frequency flux noise of different devices were compared with the contribution due to the spin fluctuation of defects during FIB processing and the thermally activated flux hopping in the SQUID washer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا