Do you want to publish a course? Click here

We present results from Chandra, XMM-Newton, and ROSAT observations of the Planck SZ-detected cluster A3716 (PLCKG345.40-39.34 - G345). We show that G345 is, in fact, two subclusters separated on the sky by 400 kpc. We measure the subclusters gas temperatures (~ 2-3 keV), total (~ 1-2 x 10^14 solar masses) and gas (~ 1-2 x 10^13 solar masses) masses, gas mass fraction within r500, entropy profiles, and X-ray luminosities (~ 10^43 erg/s). Using the gas density and temperature profiles for both subclusters, we show that there is good (0.8 sigma) agreement between the expected Sunyaev-Zeldovich signal predicted from the X-ray data and that measured from the Planck mission, and better agreement within 0.6 sigma when we re-computed the Planck value assuming a two component cluster model, with relative amplitudes fixed based on the X-ray data. Dynamical analysis shows that the two galaxy subclusters are very likely (> 97% probability) gravitationally bound, and in the most likely scenario, the subclusters will undergo core passage in 500 +- 200 Myr. The northern subcluster is centrally peaked and has a low entropy core, while the southern subcluster has a high central entropy. The high central entropy in the southern subcluster can be explained either by the mergers of several groups, as suggested by the presence of five giant ellipticals or by AGN energy injection, as suggested by the presence of a strong radio source in one of its massive elliptical galaxies, or by a combination of both processes.
We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Bootes survey. Our final sample comprises 32 systems at textbf{$z<1.75$}, with 14 below $z = 0.35$. For these 14 systems we estimate velocity dispersions ($sigma_{gr}$) and perform a virial analysis to obtain the radii ($R_{200}$ and $R_{500}$) and total masses ($M_{200}$ and $M_{500}$) for groups with at least five galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity ($L_X$). We examine the performance of the group properties $sigma_{gr}$, $L_{opt}$ and $L_X$, as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Bootes sample and comparing these with samples from the literature, we find a break in the $L_X$-$M_{500}$ relation at approximately $M_{500} = 5times10^{13}$ M$_odot$ (for $M_{500} > 5times10^{13}$ M$_odot$, $M_{500} propto L_X^{0.61pm0.02}$, while for $M_{500} leq 5times10^{13}$ M$_odot$, $M_{500} propto L_X^{0.44pm0.05}$). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions and projection effects which reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify $sim$1800 groups ($L_X = 10^{41}-10^{43}$ ergs s$^{-1}$) within a distance of 200 Mpc. Since groups lie in large scale filaments, this group sample will map the large scale structure of the local universe.
The presence of hot X-ray emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC821, NGC3379, NGC4278, and NGC4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC821 and NGC3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo a Type Ia supernova (SN Ia) driven outflow. We detect hot X-ray gas with a temperature of kT ~ 0.35 keV in NGC4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50 arcsec (~3.9 kpc) the estimated gas mass is ~3 x 10^7 M_sun, implying a gas mass fraction of ~0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC4697 has an average temperature of kT ~ 0.3 keV, and a significantly broader distribution than the stellar light. The total gas mass within 90 arcsec (~5.1 kpc) is ~2.1 x 10^8 M_sun, hence the gas mass fraction is ~0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.
A deep Chandra observation of the X-ray bright group, NGC 5044, shows that the central region of this group has been strongly perturbed by repeated AGN outbursts. These recent AGN outbursts have produced many small X-ray cavities, cool filaments and cold fronts. We find a correlation between the coolest X-ray emitting gas and the morphology of the Ha filaments. The Ha filaments are oriented in the direction of the X-ray cavities, suggesting that the warm gas responsible for the Halpha emission originated near the center of NGC 5044 and was dredged up behind the buoyant, AGN-inflated X-ray cavities. A detailed spectroscopic analysis shows that the central region of NGC 5044 contains spatially varying amounts of multiphase gas. The regions with the most inhomogeneous gas temperature distribution tend to correlate with the extended 235 MHz and 610 MHz radio emission detected by the GMRT. This may result from gas entrainment within the radio emitting plasma or mixing of different temperature gas in the regions surrounding the radio emitting plasma by AGN induced turbulence. Accounting for the effects of multiphase gas, we find that the abundance of heavy elements is fairly uniform within the central 100 kpc, with abundances of 60-80% solar for all elements except oxygen, which has a significantly sub-solar abundance. In the absence of continued AGN outbursts, the gas in the center of NGC 5044 should attain a more homogeneous distribution of gas temperature through the dissipation of turbulent kinetic energy and heat conduction in approximately 10e8 yr. The presence of multiphase gas in NGC 5044 indicates that the time between recent AGN outbursts has been less than approximately 10e8 yr.
102 - Paul Nulsen 2009
Outbursts from active galactic nuclei (AGN) affect the hot atmospheres of isolated giant elliptical galaxies (gEs), as well as those in groups and clusters of galaxies. Chandra observations of a sample of nearby gEs show that the average power of AGN outbursts is sufficient to stop their hot atmospheres from cooling and forming stars, consistent with radio mode feedback models. The outbursts are intermittent, with duty cycles that increases with size.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا