Do you want to publish a course? Click here

208 - Jing Liu , Jing Cheng , Li-Bin Fu 2015
Conserved quantities are crucial in quantum physics. Here we discuss a general scenario of Hamiltonians. All the Hamiltonians within this scenario share a common conserved quantity form. For unitary parametrization processes, the characteristic operator of this scenario is analytically provided, as well as the corresponding quantum Fisher information (QFI). As the application of this scenario, we focus on two classes of Hamiltonians: su(2) category and canonical category. Several specific physical systems in these two categories are discussed in detail. Besides, we also calculate an alternative form of QFI in this scenario.
99 - Cheng Li , Enci Wang , Lin Lin 2015
We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000AA-break (D4000), Hdelta absorption (EW(Hd_A)) and Halpha emission (EW(Ha)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D4000 measured in the central spaxel of each datacube exceeds 1.6. For each galaxy we generate both 2D maps and radial profiles of D4000, EW(Hd_A) and EW(Ha). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D4000 decreases, while both EW(Hd_A) and EW(Ha) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally-measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outwards as it moves to the red sequence.
Based on large optical and mid-infrared (IR) surveys, we investigate the relation between nuclear activity in local Seyfert 2 galaxies and galaxy interactions using a statistical neighbour counting technique. At the same level of host galaxy star formation (SF), we find that active galactic nuclei (AGNs) with stronger [OIII] emission lines do not show an excess of near neighbours, while AGNs with stronger mid-IR emission do have more near neighbours within a projected distance of 100 kpc. The excess neighbour count increases with decreasing projected radius. These results suggest a phase of torus formation during galaxy interactions.
In order to test the performance of detector/prototype in environment of laboratory, we design and build a larger area ($90times52$ $cm^2$) test platform of cosmic ray based on well-designed Multi-gap Resistive Plate Chamber (MRPC) with an excellent time resolution and a high detection efficiency for the minimum ionizing particles (MIPs). The time resolution of the MRPC module used is tested to be ~80 ps, and the position resolution along the strip is ~5 mm, while the position resolution perpendicular to the strip is ~12.7 mm. The platform constructed by four MRPC modules can be functional for tracking the cosmic rays with a spatial resolution ~6.3 mm, and provide a reference time ~40 ps.
Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature.
We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within $sim$50 kpc around the barred galaxies when compared to unbarred galaxies form the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.
168 - Wenhao You , Yi Zhou , Cheng Li 2014
A GEM detector with an effective area of 30*30 cm2 has been constructed using an improved self-stretch technique, which enables an easy and fast GEM assembling. The design and assembling of the detector is described. Results from tests of the detector with 8 keV X-rays on effective gain and energy resolution are presented.
We analyze a sample of 30,000 nearby obscured AGNs with optical spectra from SDSS and mid-IR photometry from WISE. Our aim is to investigate the AGN host galaxy properties with mid-IR luminosities as AGN activity indicator, and to compare with previous studies based on [OIII] emission lines. First we find that the [3.4] - [4.6] colour has weak dependence on host stellar age, but strong dependence on AGN activity. We then use a pair-matching technique to subtract the host 4.6 micron contribution. By combining Seyferts with a sample of SDSS quasars at z < 0.7, we show that the [OIII] and the intrinsic AGN 4.6 micron luminosities correlate roughly linearly over 4 orders of magnitude, but with substantial scatter. We also compare the partition functions of the total integrated 4.6 micron and [OIII] line luminosities from Seyferts and a sub-population of LINERs with significant nuclear 4.6 micron emission, as function of a variety of host galaxy properties, finding that they are identical. We conclude, therefore, that [OIII] as an AGN indicator shows no particular biases as compared to the 4.6 micron luminosity. Our results also demonstrate that some LINERs do fit in with the expectations of the simple Unified Model.
We compare the semi-analytic models of galaxy formation of Fu et al. (2010), which track the evolution of the radial profiles of atomic and molecular gas in galaxies, with gas fraction scaling relations derived from the COLD GASS survey (Saintonge et al 2011). The models provide a good description of how condensed baryons in galaxies with gas are partitioned into stars, atomic and molecular gas as a function of galaxy stellar mass and surface density. The models do not reproduce the tight observed relation between stellar surface density and bulge-to-disk ratio for this population. We then turn to an analysis of thequenched population of galaxies without detectable cold gas. The current implementation of radio-mode feedback in the models disagrees strongly with the data. In the models, gas cooling shuts down in nearly all galaxies in dark matter halos above a mass of 10**12 M_sun. As a result, stellar mass is the observable that best predicts whether a galaxy has little or no neutral gas. In contrast, our data show that quenching is largely independent of stellar mass. Instead, there are clear thresholds in bulge-to-disk ratio and in stellar surface density that demarcate the location of quenched galaxies. We propose that processes associated with bulge formation play a key role in depleting the neutral gas in galaxies and that further gas accretion is suppressed following the formation of the bulge, even in dark matter halos of low mass.
A new prototype of large area Multi-gap Resistive Plate Chamber (MRPC) with long readout strips was built. This Long-strip Multi-gap Resistive Plate Chamber (LMRPC) is double stacked and has ten 250 $mu$m-thick gas gaps. Signals are read out from two ends of strip with an active area of 50 cm$times$2.5 cm in each. The detector was tested at FOPI in GSI, using the secondary particles of proton beams ($E = 3.5 GeV$) colliding with a Pb target. The results show that the LMRPC prototype has a time resolution of about 60$sim$70 ps; the detecting efficiency is over 98% and the ratio of cross-talk is lower than 2%. The detector also has a good spatial resolution of 0.36 cm along the strip direction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا