Do you want to publish a course? Click here

P-MaNGA: Gradients in Recent Star Formation Histories as Diagnostics for Galaxy Growth and Death

120   0   0.0 ( 0 )
 Added by Cheng Li
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the data produced by the MaNGA prototype run (P-MaNGA), aiming to test how the radial gradients in recent star formation histories, as indicated by the 4000AA-break (D4000), Hdelta absorption (EW(Hd_A)) and Halpha emission (EW(Ha)) indices, can be useful for understanding disk growth and star formation cessation in local galaxies. We classify 12 galaxies observed on two P-MaNGA plates as either centrally quiescent (CQ) or centrally star-forming (CSF), according to whether D4000 measured in the central spaxel of each datacube exceeds 1.6. For each galaxy we generate both 2D maps and radial profiles of D4000, EW(Hd_A) and EW(Ha). We find that CSF galaxies generally show very weak or no radial variation in these diagnostics. In contrast, CQ galaxies present significant radial gradients, in the sense that D4000 decreases, while both EW(Hd_A) and EW(Ha) increase from the galactic center outward. The outer regions of the galaxies show greater scatter on diagrams relating the three parameters than their central parts. In particular, the clear separation between centrally-measured quiescent and star-forming galaxies in these diagnostic planes is largely filled in by the outer parts of galaxies whose global colors place them in the green valley, supporting the idea that the green valley represents a transition between blue-cloud and red-sequence phases, at least in our small sample. These results are consistent with a picture in which the cessation of star formation propagates from the center of a galaxy outwards as it moves to the red sequence.



rate research

Read More

98 - Daniel Goddard 2016
We study the internal gradients of stellar population properties within $1.5;R_{rm e}$ for a representative sample of 721 galaxies with stellar masses ranging between $10^{9};M_{odot}$ to $10^{11.5};M_{odot}$ from the SDSS-IV MaNGA IFU survey. Through the use of our full spectral fitting code FIREFLY, we derive light and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quanfify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties, and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. {em Mass-weighted} age gradients of early-types are positive ($sim 0.09; {rm dex}/R_{rm e}$) pointing to outside-in progression of star formation, while late-type galaxies have negative {em light-weighted} age gradients ($sim -0.11; {rm dex}/R_{rm e}$), suggesting an inside-out formation of discs. We detect negative metallicity gradients in both early and late-type galaxies, but these are significantly steeper in late-types, suggesting that radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of $d( abla [Z/H])/d(log M)sim -0.2pm 0.05;$, compared to $d( abla [Z/H])/d(log M)sim -0.05pm 0.05;$ for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.
This is the third paper of a series where we study the stellar population gradients (SP; ages, metallicities, $alpha$-element abundance ratios and stellar initial mass functions) of early type galaxies (ETGs) at $zle 0.08$ from the MaNGA-DR15 survey. In this work we focus on the S0 population and quantify how the SP varies across the population as well as with galactocentric distance. We do this by measuring Lick indices and comparing them to stellar population synthesis models. This requires spectra with high signal-to-noise which we achieve by stacking in bins of luminosity (L$_r$) and central velocity dispersion ($sigma_0$). We find that: 1) There is a bimodality in the S0 population: S0s more massive than $3times 10^{10}M_odot$ show stronger velocity dispersion and age gradients (age and $sigma_r$ decrease outwards) but little or no metallicity gradient, while the less massive ones present relatively flat age and velocity dispersion profiles, but a significant metallicity gradient (i.e. [M/H] decreases outwards). Above $2times10^{11}M_odot$ the number of S0s drops sharply. These two mass scales are also where global scaling relations of ETGs change slope. 2) S0s have steeper velocity dispersion profiles than fast rotating elliptical galaxies (E-FRs) of the same luminosity and velocity dispersion. The kinematic profiles and stellar population gradients of E-FRs are both more similar to those of slow rotating ellipticals (E-SRs) than to S0s, suggesting that E-FRs are not simply S0s viewed face-on. 3) At fixed $sigma_0$, more luminous S0s and E-FRs are younger, more metal rich and less $alpha$-enhanced. Evidently for these galaxies, the usual statement that massive galaxies are older is not true if $sigma_0$ is held fixed.
We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the efficacy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, red and dead galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.
We adapt the L-Galaxies semi-analytic model to follow the star-formation histories (SFH) of galaxies -- by which we mean a record of the formation time and metallicities of the stars that are present in each galaxy at a given time. We use these to construct stellar spectra in post-processing, which offers large efficiency savings and allows user-defined spectral bands and dust models to be applied to data stored in the Millennium data repository. We contrast model SFHs from the Millennium Simulation with observed ones from the VESPA algorithm as applied to the SDSS-7 catalogue. The overall agreement is good, with both simulated and SDSS galaxies showing a steeper SFH with increased stellar mass. The SFHs of blue and red galaxies, however, show poor agreement between data and simulations, which may indicate that the termination of star formation is too abrupt in the models. The mean star-formation rate (SFR) of model galaxies is well-defined and is accurately modelled by a double power law at all redshifts: SFR proportional to $1/(x^{-1.39}+x^{1.33})$, where $x=(t_a-t)/3.0,$Gyr, $t$ is the age of the stars and $t_a$ is the loopback time to the onset of galaxy formation; above a redshift of unity, this is well approximated by a gamma function: SFR proportional to $x^{1.5}e^{-x}$, where $x=(t_a-t)/2.0,$Gyr. Individual galaxies, however, show a wide dispersion about this mean. When split by mass, the SFR peaks earlier for high-mass galaxies than for lower-mass ones, and we interpret this downsizing as a mass-dependence in the evolution of the quenched fraction: the SFHs of star-forming galaxies show only a weak mass dependence.
150 - K. Rowlands , T. Heckman , V. Wild 2018
A key task of observational extragalactic astronomy is to determine where -- within galaxies of diverse masses and morphologies -- stellar mass growth occurs, how it depends on galaxy properties and what processes regulate star formation. Using spectroscopic indices derived from the stellar continuum at $sim 4000$AA, we determine the spatially resolved star-formation histories of 980000 spaxels in 2404 galaxies in the SDSS-IV MaNGA IFU survey. We examine the spatial distribution of star-forming, quiescent, green valley, starburst and post-starburst spaxels as a function of stellar mass and morphology to see where and in what types of galaxy star formation is occurring. The spatial distribution of star-formation is dependent primarily on stellar mass, with a noticeable change in the distribution at mstar$>10^{10}$msun. Galaxies above this mass have an increasing fraction of regions that are forming stars with increasing radius, whereas lower mass galaxies have a constant fraction of star forming regions with radius. Our findings support a picture of inside-out growth and quenching at high masses. We find that morphology (measured via concentration) correlates with the fraction of star-forming spaxels, but not with their radial distribution. We find (post-)starburst regions are more common outside of the galaxy centre, are preferentially found in asymmetric galaxies, and have lower gas-phase metallicity than other regions, consistent with interactions triggering starbursts and driving low metallicity gas into regions at $<1.5R_e$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا