Do you want to publish a course? Click here

Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of the setup and calibration procedures for these experiments. We discuss the design and characteristics of the surface-electrode trap and the microwave system, and compare experimental measurements of the microwave near-fields with numerical simulations. Additionally, we present a method that utilizes oscillating magnetic-field gradients to detect micromotion induced by the ponderomotive radio-frequency potential in linear traps. Finally, we discuss the present limitations of microwave-driven two-ion entangling gates in our system.
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multi-qubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser beam control and motional state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.
Mixtures of bosonic and fermionic atoms in optical lattices provide a promising arena to study strongly correlated systems. In experiments realizing such mixtures in the quantum degenerate regime the temperature is a key parameter. In this work, we investigate the intrinsic heating and cooling effects due to an entropy-preserving raising of the optical lattice potential. We analyze this process, identify the generic behavior valid for a wide range of parameters, and discuss it quantitatively for the recent experiments with 87Rb and 40K atoms. In the absence of a lattice, we treat the bosons in the Hartree-Fock-Bogoliubov-Popov-approximation, including the fermions in a self-consistent mean field interaction. In the presence of the full three-dimensional lattice, we use a strong coupling expansion. As a result of the presence of the fermions, the temperature of the mixture after the lattice ramp-up is always higher than for the pure bosonic case. This sheds light onto a key point in the analysis of recent experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا